Abstract:Natural language explanations (NLEs) are vital for elucidating the reasoning behind large language model (LLM) decisions. Many techniques have been developed to generate NLEs using LLMs. However, like humans, LLMs might not always produce optimal NLEs on first attempt. Inspired by human learning processes, we introduce Cross-Refine, which employs role modeling by deploying two LLMs as generator and critic, respectively. The generator outputs a first NLE and then refines this initial explanation using feedback and suggestions provided by the critic. Cross-Refine does not require any supervised training data or additional training. We validate Cross-Refine across three NLP tasks using three state-of-the-art open-source LLMs through automatic and human evaluation. We select Self-Refine (Madaan et al., 2023) as the baseline, which only utilizes self-feedback to refine the explanations. Our findings from automatic evaluation and a user study indicate that Cross-Refine outperforms Self-Refine. Meanwhile, Cross-Refine can perform effectively with less powerful LLMs, whereas Self-Refine only yields strong results with ChatGPT. Additionally, we conduct an ablation study to assess the importance of feedback and suggestions. Both of them play an important role in refining explanations. We further evaluate Cross-Refine on a bilingual dataset in English and German.
Abstract:Free-text rationales justify model decisions in natural language and thus become likable and accessible among approaches to explanation across many tasks. However, their effectiveness can be hindered by misinterpretation and hallucination. As a perturbation test, we investigate how large language models (LLMs) perform the task of natural language explanation (NLE) under the effects of readability level control, i.e., being prompted for a rationale targeting a specific expertise level, such as sixth grade or college. We find that explanations are adaptable to such instruction, but the requested readability is often misaligned with the measured text complexity according to traditional readability metrics. Furthermore, the quality assessment shows that LLMs' ratings of rationales across text complexity exhibit a similar pattern of preference as observed in natural language generation (NLG). Finally, our human evaluation suggests a generally satisfactory impression on rationales at all readability levels, with high-school-level readability being most commonly perceived and favored.
Abstract:Conversational explainable artificial intelligence (ConvXAI) systems based on large language models (LLMs) have garnered significant interest from the research community in natural language processing (NLP) and human-computer interaction (HCI). Such systems can provide answers to user questions about explanations, have the potential to enhance users' comprehension and offer more information about the decision-making and generation processes of LLMs. Currently available ConvXAI systems are based on intent recognition rather than free chat. Thus, reliably grasping users' intentions in ConvXAI systems still presents a challenge, because there is a broad range of XAI methods to map requests onto and each of them can have multiple slots to take care of. In order to bridge this gap, we present CoXQL, the first dataset for user intent recognition in ConvXAI, covering 31 intents, seven of which require filling additional slots. Subsequently, we enhance an existing parsing approach by incorporating template validations, and conduct an evaluation of several LLMs on CoXQL using different parsing strategies. We conclude that the improved parsing approach (MP+) surpasses the performance of previous approaches. We also discover that intents with multiple slots remain highly challenging for LLMs.
Abstract:Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users' understanding, as one-off explanations may occasionally fall short in providing sufficient information to the user. Current solutions for dialogue-based explanations, however, require many dependencies and are not easily transferable to tasks they were not designed for. With LLMCheckup, we present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior. We enable LLMs to generate all explanations by themselves and take care of intent recognition without fine-tuning, by connecting them with a broad spectrum of Explainable AI (XAI) tools, e.g. feature attributions, embedding-based similarity, and prompting strategies for counterfactual and rationale generation. LLM (self-)explanations are presented as an interactive dialogue that supports follow-up questions and generates suggestions. LLMCheckup provides tutorials for operations available in the system, catering to individuals with varying levels of expertise in XAI and supports multiple input modalities. We introduce a new parsing strategy called multi-prompt parsing substantially enhancing the parsing accuracy of LLMs. Finally, we showcase the tasks of fact checking and commonsense question answering.
Abstract:While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel Adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model's predicted label when it's not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.
Abstract:Past work in natural language processing interpretability focused mainly on popular classification tasks while largely overlooking generation settings, partly due to a lack of dedicated tools. In this work, we introduce Inseq, a Python library to democratize access to interpretability analyses of sequence generation models. Inseq enables intuitive and optimized extraction of models' internal information and feature importance scores for popular decoder-only and encoder-decoder Transformers architectures. We showcase its potential by adopting it to highlight gender biases in machine translation models and locate factual knowledge inside GPT-2. Thanks to its extensible interface supporting cutting-edge techniques such as contrastive feature attribution, Inseq can drive future advances in explainable natural language generation, centralizing good practices and enabling fair and reproducible model evaluations.
Abstract:Saliency maps can explain a neural model's prediction by identifying important input features. While they excel in being faithful to the explained model, saliency maps in their entirety are difficult to interpret for humans, especially for instances with many input features. In contrast, natural language explanations (NLEs) are flexible and can be tuned to a recipient's expectations, but are costly to generate: Rationalization models are usually trained on specific tasks and require high-quality and diverse datasets of human annotations. We combine the advantages from both explainability methods by verbalizing saliency maps. We formalize this underexplored task and propose a novel methodology that addresses two key challenges of this approach -- what and how to verbalize. Our approach utilizes efficient search methods that are task- and model-agnostic and do not require another black-box model, and hand-crafted templates to preserve faithfulness. We conduct a human evaluation of explanation representations across two natural language processing (NLP) tasks: news topic classification and sentiment analysis. Our results suggest that saliency map verbalization makes explanations more understandable and less cognitively challenging to humans than conventional heatmap visualization.
Abstract:The human-centric explainable artificial intelligence (HCXAI) community has raised the need for framing the explanation process as a conversation between human and machine. In this position paper, we establish desiderata for Mediators, text-based conversational agents which are capable of explaining the behavior of neural models interactively using natural language. From the perspective of natural language processing (NLP) research, we engineer a blueprint of such a Mediator for the task of sentiment analysis and assess how far along current research is on the path towards dialogue-based explanations.
Abstract:In the language domain, as in other domains, neural explainability takes an ever more important role, with feature attribution methods on the forefront. Many such methods require considerable computational resources and expert knowledge about implementation details and parameter choices. To facilitate research, we present Thermostat which consists of a large collection of model explanations and accompanying analysis tools. Thermostat allows easy access to over 200k explanations for the decisions of prominent state-of-the-art models spanning across different NLP tasks, generated with multiple explainers. The dataset took over 10k GPU hours (> one year) to compile; compute time that the community now saves. The accompanying software tools allow to analyse explanations instance-wise but also accumulatively on corpus level. Users can investigate and compare models, datasets and explainers without the need to orchestrate implementation details. Thermostat is fully open source, democratizes explainability research in the language domain, circumvents redundant computations and increases comparability and replicability.
Abstract:Amid a discussion about Green AI in which we see explainability neglected, we explore the possibility to efficiently approximate computationally expensive explainers. To this end, we propose the task of feature attribution modelling that we address with Empirical Explainers. Empirical Explainers learn from data to predict the attribution maps of expensive explainers. We train and test Empirical Explainers in the language domain and find that they model their expensive counterparts well, at a fraction of the cost. They could thus mitigate the computational burden of neural explanations significantly, in applications that tolerate an approximation error.