Abstract:Feature engineering is crucial for optimizing machine learning model performance, particularly in tabular data classification tasks. Leveraging advancements in natural language processing, this study presents a systematic approach to enrich tabular datasets with features derived from large language model embeddings. Through a comprehensive ablation study on diverse datasets, we assess the impact of RoBERTa and GPT-2 embeddings on ensemble classifiers, including Random Forest, XGBoost, and CatBoost. Results indicate that integrating embeddings with traditional numerical and categorical features often enhances predictive performance, especially on datasets with class imbalance or limited features and samples, such as UCI Adult, Heart Disease, Titanic, and Pima Indian Diabetes, with improvements particularly notable in XGBoost and CatBoost classifiers. Additionally, feature importance analysis reveals that LLM-derived features frequently rank among the most impactful for the predictions. This study provides a structured approach to embedding-based feature enrichment and illustrates its benefits in ensemble learning for tabular data.
Abstract:Large Language Models (LLMs) have revolutionized numerous applications, making them an integral part of our digital ecosystem. However, their reliability becomes critical, especially when these models are exposed to misinformation. We primarily analyze the susceptibility of state-of-the-art LLMs to factual inaccuracies when they encounter false information in a QnA scenario, an issue that can lead to a phenomenon we refer to as *knowledge drift*, which significantly undermines the trustworthiness of these models. We evaluate the factuality and the uncertainty of the models' responses relying on Entropy, Perplexity, and Token Probability metrics. Our experiments reveal that an LLM's uncertainty can increase up to 56.6% when the question is answered incorrectly due to the exposure to false information. At the same time, repeated exposure to the same false information can decrease the models uncertainty again (-52.8% w.r.t. the answers on the untainted prompts), potentially manipulating the underlying model's beliefs and introducing a drift from its original knowledge. These findings provide insights into LLMs' robustness and vulnerability to adversarial inputs, paving the way for developing more reliable LLM applications across various domains. The code is available at https://github.com/afastowski/knowledge_drift.
Abstract:We introduce an innovative approach to enhancing the empirical risk minimization (ERM) process in model training through a refined reweighting scheme of the training data to enhance fairness. This scheme aims to uphold the sufficiency rule in fairness by ensuring that optimal predictors maintain consistency across diverse sub-groups. We employ a bilevel formulation to address this challenge, wherein we explore sample reweighting strategies. Unlike conventional methods that hinge on model size, our formulation bases generalization complexity on the space of sample weights. We discretize the weights to improve training speed. Empirical validation of our method showcases its effectiveness and robustness, revealing a consistent improvement in the balance between prediction performance and fairness metrics across various experiments.
Abstract:Psychological trauma can manifest following various distressing events and is captured in diverse online contexts. However, studies traditionally focus on a single aspect of trauma, often neglecting the transferability of findings across different scenarios. We address this gap by training language models with progressing complexity on trauma-related datasets, including genocide-related court data, a Reddit dataset on post-traumatic stress disorder (PTSD), counseling conversations, and Incel forum posts. Our results show that the fine-tuned RoBERTa model excels in predicting traumatic events across domains, slightly outperforming large language models like GPT-4. Additionally, SLALOM-feature scores and conceptual explanations effectively differentiate and cluster trauma-related language, highlighting different trauma aspects and identifying sexual abuse and experiences related to death as a common traumatic event across all datasets. This transferability is crucial as it allows for the development of tools to enhance trauma detection and intervention in diverse populations and settings.
Abstract:LLMs are changing the way humans create and interact with content, potentially affecting citizens' political opinions and voting decisions. As LLMs increasingly shape our digital information ecosystems, auditing to evaluate biases, sycophancy, or steerability has emerged as an active field of research. In this paper, we evaluate and compare the alignment of six LLMs by OpenAI, Anthropic, and Cohere with German party positions and evaluate sycophancy based on a prompt experiment. We contribute to evaluating political bias and sycophancy in multi-party systems across major commercial LLMs. First, we develop the benchmark dataset GermanPartiesQA based on the Voting Advice Application Wahl-o-Mat covering 10 state and 1 national elections between 2021 and 2023. In our study, we find a left-green tendency across all examined LLMs. We then conduct our prompt experiment for which we use the benchmark and sociodemographic data of leading German parliamentarians to evaluate changes in LLMs responses. To differentiate between sycophancy and steerabilty, we use 'I am [politician X], ...' and 'You are [politician X], ...' prompts. Against our expectations, we do not observe notable differences between prompting 'I am' and 'You are'. While our findings underscore that LLM responses can be ideologically steered with political personas, they suggest that observed changes in LLM outputs could be better described as personalization to the given context rather than sycophancy.
Abstract:A multitude of industries depend on accurate and reasonable tabular data augmentation for their business processes. Contemporary methodologies in generating tabular data revolve around utilizing Generative Adversarial Networks (GAN) or fine-tuning Large Language Models (LLM). However, GAN-based approaches are documented to produce samples with common-sense errors attributed to the absence of external knowledge. On the other hand, LLM-based methods exhibit a limited capacity to capture the disparities between synthesized and actual data distribution due to the absence of feedback from a discriminator during training. Furthermore, the decoding of LLM-based generation introduces gradient breakpoints, impeding the backpropagation of loss from a discriminator, thereby complicating the integration of these two approaches. To solve this challenge, we propose using proximal policy optimization (PPO) to apply GANs, guiding LLMs to enhance the probability distribution of tabular features. This approach enables the utilization of LLMs as generators for GANs in synthesizing tabular data. Our experiments demonstrate that PPO leads to an approximately 4\% improvement in the accuracy of models trained on synthetically generated data over state-of-the-art across three real-world datasets.
Abstract:We address the critical challenge of applying feature attribution methods to the transformer architecture, which dominates current applications in natural language processing and beyond. Traditional attribution methods to explainable AI (XAI) explicitly or implicitly rely on linear or additive surrogate models to quantify the impact of input features on a model's output. In this work, we formally prove an alarming incompatibility: transformers are structurally incapable to align with popular surrogate models for feature attribution, undermining the grounding of these conventional explanation methodologies. To address this discrepancy, we introduce the Softmax-Linked Additive Log-Odds Model (SLALOM), a novel surrogate model specifically designed to align with the transformer framework. Unlike existing methods, SLALOM demonstrates the capacity to deliver a range of faithful and insightful explanations across both synthetic and real-world datasets. Showing that diverse explanations computed from SLALOM outperform common surrogate explanations on different tasks, we highlight the need for task-specific feature attributions rather than a one-size-fits-all approach.
Abstract:The streams of research on adversarial examples and counterfactual explanations have largely been growing independently. This has led to several recent works trying to elucidate their similarities and differences. Most prominently, it has been argued that adversarial examples, as opposed to counterfactual explanations, have a unique characteristic in that they lead to a misclassification compared to the ground truth. However, the computational goals and methodologies employed in existing counterfactual explanation and adversarial example generation methods often lack alignment with this requirement. Using formal definitions of adversarial examples and counterfactual explanations, we introduce non-adversarial algorithmic recourse and outline why in high-stakes situations, it is imperative to obtain counterfactual explanations that do not exhibit adversarial characteristics. We subsequently investigate how different components in the objective functions, e.g., the machine learning model or cost function used to measure distance, determine whether the outcome can be considered an adversarial example or not. Our experiments on common datasets highlight that these design choices are often more critical in deciding whether recourse is non-adversarial than whether recourse or attack algorithms are used. Furthermore, we show that choosing a robust and accurate machine learning model results in less adversarial recourse desired in practice.
Abstract:Wide usage of ChatGPT has highlighted the potential of reinforcement learning from human feedback. However, its training pipeline relies on manual ranking, a resource-intensive process. To reduce labor costs, we propose a self-supervised text ranking approach for applying Proximal-Policy-Optimization to fine-tune language models while eliminating the need for human annotators. Our method begins with probabilistic sampling to encourage a language model to generate diverse responses for each input. We then employ TextRank and ISODATA algorithms to rank and cluster these responses based on their semantics. Subsequently, we construct a reward model to learn the rank and optimize our generative policy. Our experimental results, conducted using two language models on three tasks, demonstrate that the models trained by our method considerably outperform baselines regarding BLEU, GLEU, and METEOR scores. Furthermore, our manual evaluation shows that our ranking results exhibit a remarkably high consistency with that of humans. This research significantly reduces training costs of proximal policy-guided models and demonstrates the potential for self-correction of language models.
Abstract:The integration of Artificial Intelligence (AI), particularly Large Language Model (LLM)-based systems, in education has shown promise in enhancing teaching and learning experiences. However, the advent of Multimodal Large Language Models (MLLMs) like GPT-4 with vision (GPT-4V), capable of processing multimodal data including text, sound, and visual inputs, opens a new era of enriched, personalized, and interactive learning landscapes in education. Grounded in theory of multimedia learning, this paper explores the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios. Possible applications for MLLMs could range from content creation to tailored support for learning, fostering competencies in scientific practices, and providing assessment and feedback. These scenarios are not limited to text-based and uni-modal formats but can be multimodal, increasing thus personalization, accessibility, and potential learning effectiveness. Besides many opportunities, challenges such as data protection and ethical considerations become more salient, calling for robust frameworks to ensure responsible integration. This paper underscores the necessity for a balanced approach in implementing MLLMs, where the technology complements rather than supplants the educator's role, ensuring thus an effective and ethical use of AI in science education. It calls for further research to explore the nuanced implications of MLLMs on the evolving role of educators and to extend the discourse beyond science education to other disciplines. Through the exploration of potentials, challenges, and future implications, we aim to contribute to a preliminary understanding of the transformative trajectory of MLLMs in science education and beyond.