Abstract:This study investigates the ability of various vision-language (VL) models to ground context-dependent and non-context-dependent verb phrases. To do that, we introduce the CV-Probes dataset, designed explicitly for studying context understanding, containing image-caption pairs with context-dependent verbs (e.g., "beg") and non-context-dependent verbs (e.g., "sit"). We employ the MM-SHAP evaluation to assess the contribution of verb tokens towards model predictions. Our results indicate that VL models struggle to ground context-dependent verb phrases effectively. These findings highlight the challenges in training VL models to integrate context accurately, suggesting a need for improved methodologies in VL model training and evaluation.
Abstract:This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
Abstract:The dominant probing approaches rely on the zero-shot performance of image-text matching tasks to gain a finer-grained understanding of the representations learned by recent multimodal image-language transformer models. The evaluation is carried out on carefully curated datasets focusing on counting, relations, attributes, and others. This work introduces an alternative probing strategy called guided masking. The proposed approach ablates different modalities using masking and assesses the model's ability to predict the masked word with high accuracy. We focus on studying multimodal models that consider regions of interest (ROI) features obtained by object detectors as input tokens. We probe the understanding of verbs using guided masking on ViLBERT, LXMERT, UNITER, and VisualBERT and show that these models can predict the correct verb with high accuracy. This contrasts with previous conclusions drawn from image-text matching probing techniques that frequently fail in situations requiring verb understanding. The code for all experiments will be publicly available https://github.com/ivana-13/guided_masking.
Abstract:The paper describes an approach to implementing genetic programming, which uses the LLVM library to just-in-time compile/interpret the evolved abstract syntax trees. The solution is described in some detail, including a parser (based on FlexC++ and BisonC++) that can construct the trees from a simple toy language with C-like syntax. The approach is compared with a previous implementation (based on direct execution of trees using polymorphic functors) in terms of execution speed.
Abstract:This paper concerns applications of genetic algorithms and genetic programming to tasks for which it is difficult to find a representation that does not map to a highly complex and discontinuous fitness landscape. In such cases the standard algorithm is prone to getting trapped in local extremes. The paper proposes several adaptive mechanisms that are useful in preventing the search from getting trapped.