Abstract:Current research on defending against adversarial examples focuses primarily on achieving robustness against a single attack type such as $\ell_2$ or $\ell_{\infty}$-bounded attacks. However, the space of possible perturbations is much larger and currently cannot be modeled by a single attack type. The discrepancy between the focus of current defenses and the space of attacks of interest calls to question the practicality of existing defenses and the reliability of their evaluation. In this position paper, we argue that the research community should look beyond single attack robustness, and we draw attention to three potential directions involving robustness against multiple attacks: simultaneous multiattack robustness, unforeseen attack robustness, and a newly defined problem setting which we call continual adaptive robustness. We provide a unified framework which rigorously defines these problem settings, synthesize existing research in these fields, and outline open directions. We hope that our position paper inspires more research in simultaneous multiattack, unforeseen attack, and continual adaptive robustness.
Abstract:Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar's memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed - yielding speed-ups of 4-10x depending on the base LLM - as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting and input context length generalization with Larimar and show their effectiveness.
Abstract:State-of-the-art defenses against adversarial patch attacks can now achieve strong certifiable robustness with a marginal drop in model utility. However, this impressive performance typically comes at the cost of 10-100x more inference-time computation compared to undefended models -- the research community has witnessed an intense three-way trade-off between certifiable robustness, model utility, and computation efficiency. In this paper, we propose a defense framework named PatchCURE to approach this trade-off problem. PatchCURE provides sufficient "knobs" for tuning defense performance and allows us to build a family of defenses: the most robust PatchCURE instance can match the performance of any existing state-of-the-art defense (without efficiency considerations); the most efficient PatchCURE instance has similar inference efficiency as undefended models. Notably, PatchCURE achieves state-of-the-art robustness and utility performance across all different efficiency levels, e.g., 16-23% absolute clean accuracy and certified robust accuracy advantages over prior defenses when requiring computation efficiency to be close to undefended models. The family of PatchCURE defenses enables us to flexibly choose appropriate defenses to satisfy given computation and/or utility constraints in practice.
Abstract:The bulk of existing research in defending against adversarial examples focuses on defending against a single (typically bounded Lp-norm) attack, but for a practical setting, machine learning (ML) models should be robust to a wide variety of attacks. In this paper, we present the first unified framework for considering multiple attacks against ML models. Our framework is able to model different levels of learner's knowledge about the test-time adversary, allowing us to model robustness against unforeseen attacks and robustness against unions of attacks. Using our framework, we present the first leaderboard, MultiRobustBench, for benchmarking multiattack evaluation which captures performance across attack types and attack strengths. We evaluate the performance of 16 defended models for robustness against a set of 9 different attack types, including Lp-based threat models, spatial transformations, and color changes, at 20 different attack strengths (180 attacks total). Additionally, we analyze the state of current defenses against multiple attacks. Our analysis shows that while existing defenses have made progress in terms of average robustness across the set of attacks used, robustness against the worst-case attack is still a big open problem as all existing models perform worse than random guessing.
Abstract:Finding classifiers robust to adversarial examples is critical for their safe deployment. Determining the robustness of the best possible classifier under a given threat model for a given data distribution and comparing it to that achieved by state-of-the-art training methods is thus an important diagnostic tool. In this paper, we find achievable information-theoretic lower bounds on loss in the presence of a test-time attacker for multi-class classifiers on any discrete dataset. We provide a general framework for finding the optimal 0-1 loss that revolves around the construction of a conflict hypergraph from the data and adversarial constraints. We further define other variants of the attacker-classifier game that determine the range of the optimal loss more efficiently than the full-fledged hypergraph construction. Our evaluation shows, for the first time, an analysis of the gap to optimal robustness for classifiers in the multi-class setting on benchmark datasets.
Abstract:Existing defenses against adversarial examples such as adversarial training typically assume that the adversary will conform to a specific or known threat model, such as $\ell_p$ perturbations within a fixed budget. In this paper, we focus on the scenario where there is a mismatch in the threat model assumed by the defense during training, and the actual capabilities of the adversary at test time. We ask the question: if the learner trains against a specific "source" threat model, when can we expect robustness to generalize to a stronger unknown "target" threat model during test-time? Our key contribution is to formally define the problem of learning and generalization with an unforeseen adversary, which helps us reason about the increase in adversarial risk from the conventional perspective of a known adversary. Applying our framework, we derive a generalization bound which relates the generalization gap between source and target threat models to variation of the feature extractor, which measures the expected maximum difference between extracted features across a given threat model. Based on our generalization bound, we propose adversarial training with variation regularization (AT-VR) which reduces variation of the feature extractor across the source threat model during training. We empirically demonstrate that AT-VR can lead to improved generalization to unforeseen attacks during test-time compared to standard adversarial training on Gaussian and image datasets.
Abstract:Deep neural networks are known to be vulnerable to adversarially perturbed inputs. A commonly used defense is adversarial training, whose performance is influenced by model capacity. While previous works have studied the impact of varying model width and depth on robustness, the impact of increasing capacity by using learnable parametric activation functions (PAFs) has not been studied. We study how using learnable PAFs can improve robustness in conjunction with adversarial training. We first ask the question: how should we incorporate parameters into activation functions to improve robustness? To address this, we analyze the direct impact of activation shape on robustness through PAFs and observe that activation shapes with positive outputs on negative inputs and with high finite curvature can increase robustness. We combine these properties to create a new PAF, which we call Parametric Shifted Sigmoidal Linear Unit (PSSiLU). We then combine PAFs (including PReLU, PSoftplus and PSSiLU) with adversarial training and analyze robust performance. We find that PAFs optimize towards activation shape properties found to directly affect robustness. Additionally, we find that while introducing only 1-2 learnable parameters into the network, smooth PAFs can significantly increase robustness over ReLU. For instance, when trained on CIFAR-10 with additional synthetic data, PSSiLU improves robust accuracy by 4.54% over ReLU on ResNet-18 and 2.69% over ReLU on WRN-28-10 in the $\ell_{\infty}$ threat model while adding only 2 additional parameters into the network architecture. The PSSiLU WRN-28-10 model achieves 61.96% AutoAttack accuracy, improving over the state-of-the-art robust accuracy on RobustBench (Croce et al., 2020).
Abstract:We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in adversarial training, curating a very large number of real-world images is challenging. In contrast, proxy distributions enable us to sample a potentially unlimited number of images and improve adversarial robustness using these samples. We first ask the question: when does adversarial robustness benefit from incorporating additional samples from the proxy distribution in the training stage? We prove that the difference between the robustness of a classifier on the proxy and original training dataset distribution is upper bounded by the conditional Wasserstein distance between them. Our result confirms the intuition that samples from a proxy distribution that closely approximates training dataset distribution should be able to boost adversarial robustness. Motivated by this finding, we leverage samples from state-of-the-art generative models, which can closely approximate training data distribution, to improve robustness. In particular, we improve robust accuracy by up to 6.1% and 5.7% in $l_{\infty}$ and $l_2$ threat model, and certified robust accuracy by 6.7% over baselines not using proxy distributions on the CIFAR-10 dataset. Since we can sample an unlimited number of images from a proxy distribution, it also allows us to investigate the effect of an increasing number of training samples on adversarial robustness. Here we provide the first large scale empirical investigation of accuracy vs robustness trade-off and sample complexity of adversarial training by training deep neural networks on 2K to 10M images.
Abstract:Neural networks are vulnerable to input perturbations such as additive noise and adversarial attacks. In contrast, human perception is much more robust to such perturbations. The Bayesian brain hypothesis states that human brains use an internal generative model to update the posterior beliefs of the sensory input. This mechanism can be interpreted as a form of self-consistency between the maximum a posteriori (MAP) estimation of the internal generative model and the external environmental. Inspired by this, we enforce consistency in neural networks by incorporating generative recurrent feedback. We instantiate it on convolutional neural networks (CNNs). The proposed framework, termed Convolutional Neural Networks with Feedback (CNN-F), introduces a generative feedback with latent variables into existing CNN architectures, making consistent predictions via alternating MAP inference under a Bayesian framework. CNN-F shows considerably better adversarial robustness over regular feedforward CNNs on standard benchmarks. In addition, With higher V4 and IT neural predictivity, CNN-F produces object representations closer to primate vision than conventional CNNs.
Abstract:Out-of-distribution (OoD) detection is a natural downstream task for deep generative models, due to their ability to learn the input probability distribution. There are mainly two classes of approaches for OoD detection using deep generative models, viz., based on likelihood measure and the reconstruction loss. However, both approaches are unable to carry out OoD detection effectively, especially when the OoD samples have smaller variance than the training samples. For instance, both flow based and VAE models assign higher likelihood to images from SVHN when trained on CIFAR-10 images. We use a recently proposed generative model known as neural rendering model (NRM) and derive metrics for OoD. We show that NRM unifies both approaches since it provides a likelihood estimate and also carries out reconstruction in each layer of the neural network. Among various measures, we found the joint likelihood of latent variables to be the most effective one for OoD detection. Our results show that when trained on CIFAR-10, lower likelihood (of latent variables) is assigned to SVHN images. Additionally, we show that this metric is consistent across other OoD datasets. To the best of our knowledge, this is the first work to show consistently lower likelihood for OoD data with smaller variance with deep generative models.