Abstract:The efficiency of business processes relies on business key performance indicators (Biz-KPIs), that can be negatively impacted by IT failures. Business and IT Observability (BizITObs) data fuses both Biz-KPIs and IT event channels together as multivariate time series data. Forecasting Biz-KPIs in advance can enhance efficiency and revenue through proactive corrective measures. However, BizITObs data generally exhibit both useful and noisy inter-channel interactions between Biz-KPIs and IT events that need to be effectively decoupled. This leads to suboptimal forecasting performance when existing multivariate forecasting models are employed. To address this, we introduce AutoMixer, a time-series Foundation Model (FM) approach, grounded on the novel technique of channel-compressed pretrain and finetune workflows. AutoMixer leverages an AutoEncoder for channel-compressed pretraining and integrates it with the advanced TSMixer model for multivariate time series forecasting. This fusion greatly enhances the potency of TSMixer for accurate forecasts and also generalizes well across several downstream tasks. Through detailed experiments and dashboard analytics, we show AutoMixer's capability to consistently improve the Biz-KPI's forecasting accuracy (by 11-15\%) which directly translates to actionable business insights.
Abstract:Text simplification is the process of splitting and rephrasing a sentence to a sequence of sentences making it easier to read and understand while preserving the content and approximating the original meaning. Text simplification has been exploited in NLP applications like machine translation, summarization, semantic role labeling, and information extraction, opening a broad avenue for its exploitation in comprehension-based question-answering downstream tasks. In this work, we investigate the effect of text simplification in the task of question-answering using a comprehension context. We release Simple-SQuAD, a simplified version of the widely-used SQuAD dataset. Firstly, we outline each step in the dataset creation pipeline, including style transfer, thresholding of sentences showing correct transfer, and offset finding for each answer. Secondly, we verify the quality of the transferred sentences through various methodologies involving both automated and human evaluation. Thirdly, we benchmark the newly created corpus and perform an ablation study for examining the effect of the simplification process in the SQuAD-based question answering task. Our experiments show that simplification leads to up to 2.04% and 1.74% increase in Exact Match and F1, respectively. Finally, we conclude with an analysis of the transfer process, investigating the types of edits made by the model, and the effect of sentence length on the transfer model.
Abstract:Fairness is an increasingly important concern as machine learning models are used to support decision making in high-stakes applications such as mortgage lending, hiring, and prison sentencing. This paper introduces a new open source Python toolkit for algorithmic fairness, AI Fairness 360 (AIF360), released under an Apache v2.0 license {https://github.com/ibm/aif360). The main objectives of this toolkit are to help facilitate the transition of fairness research algorithms to use in an industrial setting and to provide a common framework for fairness researchers to share and evaluate algorithms. The package includes a comprehensive set of fairness metrics for datasets and models, explanations for these metrics, and algorithms to mitigate bias in datasets and models. It also includes an interactive Web experience (https://aif360.mybluemix.net) that provides a gentle introduction to the concepts and capabilities for line-of-business users, as well as extensive documentation, usage guidance, and industry-specific tutorials to enable data scientists and practitioners to incorporate the most appropriate tool for their problem into their work products. The architecture of the package has been engineered to conform to a standard paradigm used in data science, thereby further improving usability for practitioners. Such architectural design and abstractions enable researchers and developers to extend the toolkit with their new algorithms and improvements, and to use it for performance benchmarking. A built-in testing infrastructure maintains code quality.
Abstract:Dependability on AI models is of utmost importance to ensure full acceptance of the AI systems. One of the key aspects of the dependable AI system is to ensure that all its decisions are fair and not biased towards any individual. In this paper, we address the problem of detecting whether a model has an individual discrimination. Such a discrimination exists when two individuals who differ only in the values of their protected attributes (such as, gender/race) while the values of their non-protected ones are exactly the same, get different decisions. Measuring individual discrimination requires an exhaustive testing, which is infeasible for a non-trivial system. In this paper, we present an automated technique to generate test inputs, which is geared towards finding individual discrimination. Our technique combines the well-known technique called symbolic execution along with the local explainability for generation of effective test cases. Our experimental results clearly demonstrate that our technique produces 3.72 times more successful test cases than the existing state-of-the-art across all our chosen benchmarks.
Abstract:Sentiments expressed in user-generated short text and sentences are nuanced by subtleties at lexical, syntactic, semantic and pragmatic levels. To address this, we propose to augment traditional features used for sentiment analysis and sarcasm detection, with cognitive features derived from the eye-movement patterns of readers. Statistical classification using our enhanced feature set improves the performance (F-score) of polarity detection by a maximum of 3.7% and 9.3% on two datasets, over the systems that use only traditional features. We perform feature significance analysis, and experiment on a held-out dataset, showing that cognitive features indeed empower sentiment analyzers to handle complex constructs.
Abstract:In this paper, we propose a novel mechanism for enriching the feature vector, for the task of sarcasm detection, with cognitive features extracted from eye-movement patterns of human readers. Sarcasm detection has been a challenging research problem, and its importance for NLP applications such as review summarization, dialog systems and sentiment analysis is well recognized. Sarcasm can often be traced to incongruity that becomes apparent as the full sentence unfolds. This presence of incongruity- implicit or explicit- affects the way readers eyes move through the text. We observe the difference in the behaviour of the eye, while reading sarcastic and non sarcastic sentences. Motivated by his observation, we augment traditional linguistic and stylistic features for sarcasm detection with the cognitive features obtained from readers eye movement data. We perform statistical classification using the enhanced feature set so obtained. The augmented cognitive features improve sarcasm detection by 3.7% (in terms of F-score), over the performance of the best reported system.