Abstract:Expert-designed close-ended benchmarks serve as vital tools in assessing the knowledge capacity of large language models (LLMs). Despite their widespread use, concerns have mounted regarding their reliability due to limited test scenarios and an unavoidable risk of data contamination. To rectify this, we present PertEval, a toolkit devised for in-depth probing of LLMs' knowledge capacity through knowledge-invariant perturbations. These perturbations employ human-like restatement techniques to generate on-the-fly test samples from static benchmarks, meticulously retaining knowledge-critical content while altering irrelevant details. Our toolkit further includes a suite of transition analyses that compare performance on raw vs. perturbed test sets to precisely assess LLMs' genuine knowledge capacity. Six state-of-the-art LLMs are re-evaluated using PertEval. Results reveal significantly inflated performance of the LLMs on raw benchmarks, including an absolute 21% overestimation for GPT-4. Additionally, through a nuanced response pattern analysis, we discover that PertEval retains LLMs' uncertainty to specious knowledge, potentially being resolved through rote memorization and leading to inflated performance. We also find that the detailed transition analyses by PertEval could illuminate weaknesses in existing LLMs' knowledge mastery and guide the development of refinement. Given these insights, we posit that PertEval can act as an essential tool that, when applied alongside any close-ended benchmark, unveils the true knowledge capacity of LLMs, marking a significant step toward more trustworthy LLM evaluation.
Abstract:Generative query rewrite generates reconstructed query rewrites using the conversation history while rely heavily on gold rewrite pairs that are expensive to obtain. Recently, few-shot learning is gaining increasing popularity for this task, whereas these methods are sensitive to the inherent noise due to limited data size. Besides, both attempts face performance degradation when there exists language style shift between training and testing cases. To this end, we study low-resource generative conversational query rewrite that is robust to both noise and language style shift. The core idea is to utilize massive unlabeled data to make further improvements via a contrastive co-training paradigm. Specifically, we co-train two dual models (namely Rewriter and Simplifier) such that each of them provides extra guidance through pseudo-labeling for enhancing the other in an iterative manner. We also leverage contrastive learning with data augmentation, which enables our model pay more attention on the truly valuable information than the noise. Extensive experiments demonstrate the superiority of our model under both few-shot and zero-shot scenarios. We also verify the better generalization ability of our model when encountering language style shift.
Abstract:Until recently, the question of the effective inductive bias of deep models on tabular data has remained unanswered. This paper investigates the hypothesis that arithmetic feature interaction is necessary for deep tabular learning. To test this point, we create a synthetic tabular dataset with a mild feature interaction assumption and examine a modified transformer architecture enabling arithmetical feature interactions, referred to as AMFormer. Results show that AMFormer outperforms strong counterparts in fine-grained tabular data modeling, data efficiency in training, and generalization. This is attributed to its parallel additive and multiplicative attention operators and prompt-based optimization, which facilitate the separation of tabular samples in an extended space with arithmetically-engineered features. Our extensive experiments on real-world data also validate the consistent effectiveness, efficiency, and rationale of AMFormer, suggesting it has established a strong inductive bias for deep learning on tabular data. Code is available at https://github.com/aigc-apps/AMFormer.
Abstract:Image ordinal regression has been mainly studied along the line of exploiting the order of categories. However, the issues of class imbalance and category overlap that are very common in ordinal regression were largely overlooked. As a result, the performance on minority categories is often unsatisfactory. In this paper, we propose a novel framework called CIG based on controllable image generation to directly tackle these two issues. Our main idea is to generate extra training samples with specific labels near category boundaries, and the sample generation is biased toward the less-represented categories. To achieve controllable image generation, we seek to separate structural and categorical information of images based on structural similarity, categorical similarity, and reconstruction constraints. We evaluate the effectiveness of our new CIG approach in three different image ordinal regression scenarios. The results demonstrate that CIG can be flexibly integrated with off-the-shelf image encoders or ordinal regression models to achieve improvement, and further, the improvement is more significant for minority categories.
Abstract:Graph Neural Networks (GNNs) have become widely-used models for semi-supervised learning. However, the robustness of GNNs in the presence of label noise remains a largely under-explored problem. In this paper, we consider an important yet challenging scenario where labels on nodes of graphs are not only noisy but also scarce. In this scenario, the performance of GNNs is prone to degrade due to label noise propagation and insufficient learning. To address these issues, we propose a novel RTGNN (Robust Training of Graph Neural Networks via Noise Governance) framework that achieves better robustness by learning to explicitly govern label noise. More specifically, we introduce self-reinforcement and consistency regularization as supplemental supervision. The self-reinforcement supervision is inspired by the memorization effects of deep neural networks and aims to correct noisy labels. Further, the consistency regularization prevents GNNs from overfitting to noisy labels via mimicry loss in both the inter-view and intra-view perspectives. To leverage such supervisions, we divide labels into clean and noisy types, rectify inaccurate labels, and further generate pseudo-labels on unlabeled nodes. Supervision for nodes with different types of labels is then chosen adaptively. This enables sufficient learning from clean labels while limiting the impact of noisy ones. We conduct extensive experiments to evaluate the effectiveness of our RTGNN framework, and the results validate its consistent superior performance over state-of-the-art methods with two types of label noises and various noise rates.