Abstract:The problem of pre-training data detection for large language models (LLMs) has received growing attention due to its implications in critical issues like copyright violation and test data contamination. The current state-of-the-art approach, Min-K%, measures the raw token probability which we argue may not be the most informative signal. Instead, we propose Min-K%++ to normalize the token probability with statistics of the categorical distribution over the whole vocabulary, which accurately reflects the relative likelihood of the target token compared with other candidate tokens in the vocabulary. Theoretically, we back up our method by showing that the statistic it estimates is explicitly optimized during LLM training, thus serving as a reliable indicator for detecting training data. Empirically, on the WikiMIA benchmark, Min-K%++ outperforms the SOTA Min-K% by 6.2% to 10.5% in detection AUROC averaged over five models. On the more challenging MIMIR benchmark, Min-K%++ consistently improves upon Min-K% and performs on par with reference-based method, despite not requiring an extra reference model.
Abstract:Building on the cost-efficient pretraining advancements brought about by Crammed BERT, we enhance its performance and interpretability further by introducing a novel pretrained model Dependency Agreement Crammed BERT (DACBERT) and its two-stage pretraining framework - Dependency Agreement Pretraining. This framework, grounded by linguistic theories, seamlessly weaves syntax and semantic information into the pretraining process. The first stage employs four dedicated submodels to capture representative dependency agreements at the chunk level, effectively converting these agreements into embeddings. The second stage uses these refined embeddings, in tandem with conventional BERT embeddings, to guide the pretraining of the rest of the model. Evaluated on the GLUE benchmark, our DACBERT demonstrates notable improvement across various tasks, surpassing Crammed BERT by 3.13% in the RTE task and by 2.26% in the MRPC task. Furthermore, our method boosts the average GLUE score by 0.83%, underscoring its significant potential. The pretraining process can be efficiently executed on a single GPU within a 24-hour cycle, necessitating no supplementary computational resources or extending the pretraining duration compared with the Crammed BERT. Extensive studies further illuminate our approach's instrumental role in bolstering the interpretability of pretrained language models for natural language understanding tasks.
Abstract:While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.
Abstract:Question Aware Open Information Extraction (Question aware Open IE) takes question and passage as inputs, outputting an answer tuple which contains a subject, a predicate, and one or more arguments. Each field of answer is a natural language word sequence and is extracted from the passage. The semi-structured answer has two advantages which are more readable and falsifiable compared to span answer. There are two approaches to solve this problem. One is an extractive method which extracts candidate answers from the passage with the Open IE model, and ranks them by matching with questions. It fully uses the passage information at the extraction step, but the extraction is independent to the question. The other one is the generative method which uses a sequence to sequence model to generate answers directly. It combines the question and passage as input at the same time, but it generates the answer from scratch, which does not use the facts that most of the answer words come from in the passage. To guide the generation by passage, we present a two-stage decoding model which contains a tagging decoder and a correction decoder. At the first stage, the tagging decoder will tag keywords from the passage. At the second stage, the correction decoder will generate answers based on tagged keywords. Our model could be trained end-to-end although it has two stages. Compared to previous generative models, we generate better answers by generating coarse to fine. We evaluate our model on WebAssertions (Yan et al., 2018) which is a Question aware Open IE dataset. Our model achieves a BLEU score of 59.32, which is better than previous generative methods.