Abstract:Advancements in adapting deep convolution architectures for Spiking Neural Networks (SNNs) have significantly enhanced image classification performance and reduced computational burdens. However, the inability of Multiplication-Free Inference (MFI) to harmonize with attention and transformer mechanisms, which are critical to superior performance on high-resolution vision tasks, imposes limitations on these gains. To address this, our research explores a new pathway, drawing inspiration from the progress made in Multi-Layer Perceptrons (MLPs). We propose an innovative spiking MLP architecture that uses batch normalization to retain MFI compatibility and introduces a spiking patch encoding layer to reinforce local feature extraction capabilities. As a result, we establish an efficient multi-stage spiking MLP network that effectively blends global receptive fields with local feature extraction for comprehensive spike-based computation. Without relying on pre-training or sophisticated SNN training techniques, our network secures a top-1 accuracy of 66.39% on the ImageNet-1K dataset, surpassing the directly trained spiking ResNet-34 by 2.67%. Furthermore, we curtail computational costs, model capacity, and simulation steps. An expanded version of our network challenges the performance of the spiking VGG-16 network with a 71.64% top-1 accuracy, all while operating with a model capacity 2.1 times smaller. Our findings accentuate the potential of our deep SNN architecture in seamlessly integrating global and local learning abilities. Interestingly, the trained receptive field in our network mirrors the activity patterns of cortical cells.
Abstract:Deep learning-based approaches for automatic document layout analysis and content extraction have the potential to unlock rich information trapped in historical documents on a large scale. One major hurdle is the lack of large datasets for training robust models. In particular, little training data exist for Asian languages. To this end, we present HJDataset, a Large Dataset of Historical Japanese Documents with Complex Layouts. It contains over 250,000 layout element annotations of seven types. In addition to bounding boxes and masks of the content regions, it also includes the hierarchical structures and reading orders for layout elements. The dataset is constructed using a combination of human and machine efforts. A semi-rule based method is developed to extract the layout elements, and the results are checked by human inspectors. The resulting large-scale dataset is used to provide baseline performance analyses for text region detection using state-of-the-art deep learning models. And we demonstrate the usefulness of the dataset on real-world document digitization tasks. The dataset is available at https://dell-research-harvard.github.io/HJDataset/.
Abstract:We propose an approach that connects recurrent networks with different orders of hidden interaction with regular grammars of different levels of complexity. We argue that the correspondence between recurrent networks and formal computational models gives understanding to the analysis of the complicated behaviors of recurrent networks. We introduce an entropy value that categorizes all regular grammars into three classes with different levels of complexity, and show that several existing recurrent networks match grammars from either all or partial classes. As such, the differences between regular grammars reveal the different properties of these models. We also provide a unification of all investigated recurrent networks. Our evaluation shows that the unified recurrent network has improved performance in learning grammars, and demonstrates comparable performance on a real-world dataset with more complicated models.
Abstract:Data samples collected for training machine learning models are typically assumed to be independent and identically distributed (iid). Recent research has demonstrated that this assumption can be problematic as it simplifies the manifold of structured data. This has motivated different research areas such as data poisoning, model improvement, and explanation of machine learning models. In this work, we study the influence of a sample on determining the intrinsic topological features of its underlying manifold. We propose the Shapley Homology framework, which provides a quantitative metric for the influence of a sample of the homology of a simplicial complex. By interpreting the influence as a probability measure, we further define an entropy which reflects the complexity of the data manifold. Our empirical studies show that when using the 0-dimensional homology, on neighboring graphs, samples with higher influence scores have more impact on the accuracy of neural networks for determining the graph connectivity and on several regular grammars whose higher entropy values imply more difficulty in being learned.
Abstract:The verification problem for neural networks is verifying whether a neural network will suffer from adversarial samples, or approximating the maximal allowed scale of adversarial perturbation that can be endured. While most prior work contributes to verifying feed-forward networks, little has been explored for verifying recurrent networks. This is due to the existence of a more rigorous constraint on the perturbation space for sequential data, and the lack of a proper metric for measuring the perturbation. In this work, we address these challenges by proposing a metric which measures the distance between strings, and use deterministic finite automata (DFA) to represent a rigorous oracle which examines if the generated adversarial samples violate certain constraints on a perturbation. More specifically, we empirically show that certain recurrent networks allow relatively stable DFA extraction. As such, DFAs extracted from these recurrent networks can serve as a surrogate oracle for when the ground truth DFA is unknown. We apply our verification mechanism to several widely used recurrent networks on a set of the Tomita grammars. The results demonstrate that only a few models remain robust against adversarial samples. In addition, we show that for grammars with different levels of complexity, there is also a difference in the difficulty of robust learning of these grammars.
Abstract:It has been shown that rules can be extracted from highly non-linear, recursive models such as recurrent neural networks (RNNs). The RNN models mostly investigated include both Elman networks and second-order recurrent networks. Recently, new types of RNNs have demonstrated superior power in handling many machine learning tasks, especially when structural data is involved such as language modeling. Here, we empirically evaluate different recurrent models on the task of learning deterministic finite automata (DFA), the seven Tomita grammars. We are interested in the capability of recurrent models with different architectures in learning and expressing regular grammars, which can be the building blocks for many applications dealing with structural data. Our experiments show that a second-order RNN provides the best and stablest performance of extracting DFA over all Tomita grammars and that other RNN models are greatly influenced by different Tomita grammars. To better understand these results, we provide a theoretical analysis of the "complexity" of different grammars, by introducing the entropy and the averaged edit distance of regular grammars defined in this paper. Through our analysis, we categorize all Tomita grammars into different classes, which explains the inconsistency in the performance of extraction observed across all RNN models.
Abstract:Rule extraction from black-box models is critical in domains that require model validation before implementation, as can be the case in credit scoring and medical diagnosis. Though already a challenging problem in statistical learning in general, the difficulty is even greater when highly non-linear, recursive models, such as recurrent neural networks (RNNs), are fit to data. Here, we study the extraction of rules from second order recurrent neural networks trained to recognize the Tomita grammars. We show that production rules can be stably extracted from trained RNNs and that in certain cases the rules outperform the trained RNNs.
Abstract:Deep neural networks (DNNs) have proven to be quite effective in a vast array of machine learning tasks, with recent examples in cyber security and autonomous vehicles. Despite the superior performance of DNNs in these applications, it has been recently shown that these models are susceptible to a particular type of attack that exploits a fundamental flaw in their design. This attack consists of generating particular synthetic examples referred to as adversarial samples. These samples are constructed by slightly manipulating real data-points in order to "fool" the original DNN model, forcing it to mis-classify previously correctly classified samples with high confidence. Addressing this flaw in the model is essential if DNNs are to be used in critical applications such as those in cyber security. Previous work has provided various learning algorithms to enhance the robustness of DNN models, and they all fall into the tactic of "security through obscurity". This means security can be guaranteed only if one can obscure the learning algorithms from adversaries. Once the learning technique is disclosed, DNNs protected by these defense mechanisms are still susceptible to adversarial samples. In this work, we investigate this issue shared across previous research work and propose a generic approach to escalate a DNN's resistance to adversarial samples. More specifically, our approach integrates a data transformation module with a DNN, making it robust even if we reveal the underlying learning algorithm. To demonstrate the generality of our proposed approach and its potential for handling cyber security applications, we evaluate our method and several other existing solutions on datasets publicly available. Our results indicate that our approach typically provides superior classification performance and resistance in comparison with state-of-art solutions.
Abstract:It is oftentimes impossible to understand how machine learning models reach a decision. While recent research has proposed various technical approaches to provide some clues as to how a learning model makes individual decisions, they cannot provide users with ability to inspect a learning model as a complete entity. In this work, we propose a new technical approach that augments a Bayesian regression mixture model with multiple elastic nets. Using the enhanced mixture model, we extract explanations for a target model through global approximation. To demonstrate the utility of our approach, we evaluate it on different learning models covering the tasks of text mining and image recognition. Our results indicate that the proposed approach not only outperforms the state-of-the-art technique in explaining individual decisions but also provides users with an ability to discover the vulnerabilities of a learning model.
Abstract:Beyond its highly publicized victories in Go, there have been numerous successful applications of deep learning in information retrieval, computer vision and speech recognition. In cybersecurity, an increasing number of companies have become excited about the potential of deep learning, and have started to use it for various security incidents, the most popular being malware detection. These companies assert that deep learning (DL) could help turn the tide in the battle against malware infections. However, deep neural networks (DNNs) are vulnerable to adversarial samples, a flaw that plagues most if not all statistical learning models. Recent research has demonstrated that those with malicious intent can easily circumvent deep learning-powered malware detection by exploiting this flaw. In order to address this problem, previous work has developed various defense mechanisms that either augmenting training data or enhance model's complexity. However, after a thorough analysis of the fundamental flaw in DNNs, we discover that the effectiveness of current defenses is limited and, more importantly, cannot provide theoretical guarantees as to their robustness against adversarial sampled-based attacks. As such, we propose a new adversary resistant technique that obstructs attackers from constructing impactful adversarial samples by randomly nullifying features within samples. In this work, we evaluate our proposed technique against a real world dataset with 14,679 malware variants and 17,399 benign programs. We theoretically validate the robustness of our technique, and empirically show that our technique significantly boosts DNN robustness to adversarial samples while maintaining high accuracy in classification. To demonstrate the general applicability of our proposed method, we also conduct experiments using the MNIST and CIFAR-10 datasets, generally used in image recognition research.