Abstract:Diffusion models have become a cornerstone in image editing, offering flexibility with language prompts and source images. However, a key challenge is attribute leakage, where unintended modifications occur in non-target regions or within target regions due to attribute interference. Existing methods often suffer from leakage due to naive text embeddings and inadequate handling of End-of-Sequence (EOS) token embeddings. To address this, we propose ALE-Edit (Attribute-leakage-free editing), a novel framework to minimize attribute leakage with three components: (1) Object-Restricted Embeddings (ORE) to localize object-specific attributes in text embeddings, (2) Region-Guided Blending for Cross-Attention Masking (RGB-CAM) to align attention with target regions, and (3) Background Blending (BB) to preserve non-edited regions. Additionally, we introduce ALE-Bench, a benchmark for evaluating attribute leakage with new metrics for target-external and target-internal leakage. Experiments demonstrate that our framework significantly reduces attribute leakage while maintaining high editing quality, providing an efficient and tuning-free solution for multi-object image editing.
Abstract:Combinatorial online learning is a fundamental task to decide the optimal combination of base arms in sequential interactions with systems providing uncertain rewards, which is applicable to diverse domains such as robotics, social advertising, network routing and recommendation systems. In real-world scenarios, we often observe rising rewards, where the selection of a base arm not only provides an instantaneous reward but also contributes to the enhancement of future rewards, {\it e.g.}, robots enhancing proficiency through practice and social influence strengthening in the history of successful recommendations. To address this, we introduce the problem of combinatorial rising bandit to minimize policy regret and propose a provably efficient algorithm, called Combinatorial Rising Upper Confidence Bound (CRUCB), of which regret upper bound is close to a regret lower bound. To the best of our knowledge, previous studies do not provide a sub-linear regret lower bound, making it impossible to assess the efficiency of their algorithms. However, we provide the sub-linear regret lower bound for combinatorial rising bandit and show that CRUCB is provably efficient by showing that the regret upper bound is close to the regret lower bound. In addition, we empirically demonstrate the effectiveness and superiority of CRUCB not only in synthetic environments but also in realistic applications of deep reinforcement learning.
Abstract:Vision-language models (VLMs) have demonstrated remarkable zero-shot performance across various classification tasks. Nonetheless, their reliance on hand-crafted text prompts for each task hinders efficient adaptation to new tasks. While prompt learning offers a promising solution, most studies focus on maximizing the utilization of given few-shot labeled datasets, often overlooking the potential of careful data selection strategies, which enable higher accuracy with fewer labeled data. This motivates us to study a budget-efficient active prompt learning framework. Specifically, we introduce a class-guided clustering that leverages the pre-trained image and text encoders of VLMs, thereby enabling our cluster-balanced acquisition function from the initial round of active learning. Furthermore, considering the substantial class-wise variance in confidence exhibited by VLMs, we propose a budget-saving selective querying based on adaptive class-wise thresholds. Extensive experiments in active learning scenarios across nine datasets demonstrate that our method outperforms existing baselines.
Abstract:Recently, large language models (LLMs) have demonstrated remarkable performance in abstractive summarization tasks. However, controllable summarization with LLMs remains underexplored, limiting their ability to generate summaries that align with specific user preferences. In this paper, we first investigate the capability of LLMs to control diverse attributes, revealing that they encounter greater challenges with numerical attributes, such as length and extractiveness, compared to linguistic attributes. To address this challenge, we propose a guide-to-explain framework (GTE) for controllable summarization. Our GTE framework enables the model to identify misaligned attributes in the initial draft and guides it in explaining errors in the previous output. Based on this reflection, the model generates a well-adjusted summary. As a result, by allowing the model to reflect on its misalignment, we generate summaries that satisfy the desired attributes in surprisingly fewer iterations than other iterative methods solely using LLMs.
Abstract:Large language models (LLMs) have shown remarkable versatility across tasks, but aligning them with individual human preferences remains challenging due to the complexity and diversity of these preferences. Existing methods often overlook the fact that preferences are multi-objective, diverse, and hard to articulate, making full alignment difficult. In response, we propose an active preference learning framework that uses binary feedback to estimate user preferences across multiple objectives. Our approach leverages Bayesian inference to update preferences efficiently and reduces user feedback through an acquisition function that optimally selects queries. Additionally, we introduce a parameter to handle feedback noise and improve robustness. We validate our approach through theoretical analysis and experiments on language generation tasks, demonstrating its feedback efficiency and effectiveness in personalizing model responses.
Abstract:Federated fine-tuning for Large Language Models (LLMs) has recently gained attention due to the heavy communication overhead of transmitting large model updates. Low Rank Adaptation (LoRA) has been proposed as a solution, yet its application in federated learning is complicated by discordance in aggregation. Existing methods addressing this discordance often suffer from performance degradation at low ranks in heterogeneous data settings. In response, we introduce LoRA-A2 (Low Rank Adaptation with Alternating freeze and Adaptive rank selection), which demonstrates robustness in challenging settings with low ranks and high data heterogeneity. Our experimental findings reveal that LoRA-A2 maintains performance even under extreme heterogeneity and low rank conditions, achieving up to a 99.8% reduction in uploaded parameters compared to full fine-tuning without compromising performance. This adaptive mechanism boosts robustness and communication efficiency in federated fine-tuning, enabling the practical deployment of LLMs in resource-constrained environments.
Abstract:Retrieval-augmented generation (RAG) addresses key limitations of large language models (LLMs), such as hallucinations and outdated knowledge, by incorporating external databases. These databases typically consult multiple sources to encompass up-to-date and various information. However, standard RAG methods often overlook the heterogeneous source reliability in the multi-source database and retrieve documents solely based on relevance, making them prone to propagating misinformation. To address this, we propose Reliability-Aware RAG (RA-RAG) which estimates the reliability of multiple sources and incorporates this information into both retrieval and aggregation processes. Specifically, it iteratively estimates source reliability and true answers for a set of queries with no labelling. Then, it selectively retrieves relevant documents from a few of reliable sources and aggregates them using weighted majority voting, where the selective retrieval ensures scalability while not compromising the performance. We also introduce a benchmark designed to reflect real-world scenarios with heterogeneous source reliability and demonstrate the effectiveness of RA-RAG compared to a set of baselines.
Abstract:Deep learning-based expert models have reached superhuman performance in decision-making domains such as chess and Go. However, it is under-explored to explain or comment on given decisions although it is important for human education and model explainability. The outputs of expert models are accurate, but yet difficult to interpret for humans. On the other hand, large language models (LLMs) produce fluent commentary but are prone to hallucinations due to their limited decision-making capabilities. To bridge this gap between expert models and LLMs, we focus on chess commentary as a representative case of explaining complex decision-making processes through language and address both the generation and evaluation of commentary. We introduce Concept-guided Chess Commentary generation (CCC) for producing commentary and GPT-based Chess Commentary Evaluation (GCC-Eval) for assessing it. CCC integrates the decision-making strengths of expert models with the linguistic fluency of LLMs through prioritized, concept-based explanations. GCC-Eval leverages expert knowledge to evaluate chess commentary based on informativeness and linguistic quality. Experimental results, validated by both human judges and GCC-Eval, demonstrate that CCC generates commentary that is accurate, informative, and fluent.
Abstract:We study the problem of training an unbiased and accurate model given a dataset with multiple biases. This problem is challenging since the multiple biases cause multiple undesirable shortcuts during training, and even worse, mitigating one may exacerbate the other. We propose a novel training method to tackle this challenge. Our method first groups training data so that different groups induce different shortcuts, and then optimizes a linear combination of group-wise losses while adjusting their weights dynamically to alleviate conflicts between the groups in performance; this approach, rooted in the multi-objective optimization theory, encourages to achieve the minimax Pareto solution. We also present a new benchmark with multiple biases, dubbed MultiCelebA, for evaluating debiased training methods under realistic and challenging scenarios. Our method achieved the best on three datasets with multiple biases, and also showed superior performance on conventional single-bias datasets.
Abstract:We address a practical scenario of anomaly detection for industrial sound data, where the sound of a target machine is corrupted by background noise and interference from neighboring machines. Overcoming this challenge is difficult since the interference is often virtually indistinguishable from the target machine without additional information. To address the issue, we propose SSAD, a framework of source separation (SS) followed by anomaly detection (AD), which leverages machine activity information, often readily available in practical settings. SSAD consists of two components: (i) activity-informed SS, enabling effective source separation even given interference with similar timbre, and (ii) two-step masking, robustifying anomaly detection by emphasizing anomalies aligned with the machine activity. Our experiments demonstrate that SSAD achieves comparable accuracy to a baseline with full access to clean signals, while SSAD is provided only a corrupted signal and activity information. In addition, thanks to the activity-informed SS and AD with the two-step masking, SSAD outperforms standard approaches, particularly in cases with interference. It highlights the practical efficacy of SSAD in addressing the complexities of anomaly detection in industrial sound data.