Abstract:As the demand for artificial intelligence (AI) grows to address complex real-world tasks, single models are often insufficient, requiring the integration of multiple models into pipelines. This paper introduces Bel Esprit, a conversational agent designed to construct AI model pipelines based on user-defined requirements. Bel Esprit employs a multi-agent framework where subagents collaborate to clarify requirements, build, validate, and populate pipelines with appropriate models. We demonstrate the effectiveness of this framework in generating pipelines from ambiguous user queries, using both human-curated and synthetic data. A detailed error analysis highlights ongoing challenges in pipeline construction. Bel Esprit is available for a free trial at https://belesprit.aixplain.com.
Abstract:Recently, large language models (LLMs) have demonstrated remarkable performance in abstractive summarization tasks. However, controllable summarization with LLMs remains underexplored, limiting their ability to generate summaries that align with specific user preferences. In this paper, we first investigate the capability of LLMs to control diverse attributes, revealing that they encounter greater challenges with numerical attributes, such as length and extractiveness, compared to linguistic attributes. To address this challenge, we propose a guide-to-explain framework (GTE) for controllable summarization. Our GTE framework enables the model to identify misaligned attributes in the initial draft and guides it in explaining errors in the previous output. Based on this reflection, the model generates a well-adjusted summary. As a result, by allowing the model to reflect on its misalignment, we generate summaries that satisfy the desired attributes in surprisingly fewer iterations than other iterative methods solely using LLMs.
Abstract:Automatic question generation (QG) serves a wide range of purposes, such as augmenting question-answering (QA) corpora, enhancing chatbot systems, and developing educational materials. Despite its importance, most existing datasets predominantly focus on English, resulting in a considerable gap in data availability for other languages. Cross-lingual transfer for QG (XLT-QG) addresses this limitation by allowing models trained on high-resource language datasets to generate questions in low-resource languages. In this paper, we propose a simple and efficient XLT-QG method that operates without the need for monolingual, parallel, or labeled data in the target language, utilizing a small language model. Our model, trained solely on English QA datasets, learns interrogative structures from a limited set of question exemplars, which are then applied to generate questions in the target language. Experimental results show that our method outperforms several XLT-QG baselines and achieves performance comparable to GPT-3.5-turbo across different languages. Additionally, the synthetic data generated by our model proves beneficial for training multilingual QA models. With significantly fewer parameters than large language models and without requiring additional training for target languages, our approach offers an effective solution for QG and QA tasks across various languages.
Abstract:Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.
Abstract:Research on hate speech has predominantly revolved around detection and interpretation from textual inputs, leaving verbal content largely unexplored. While there has been limited exploration into hate speech detection within verbal acoustic speech inputs, the aspect of interpretability has been overlooked. Therefore, we introduce a new task of explainable audio hate speech detection. Specifically, we aim to identify the precise time intervals, referred to as audio frame-level rationales, which serve as evidence for hate speech classification. Towards this end, we propose two different approaches: cascading and End-to-End (E2E). The cascading approach initially converts audio to transcripts, identifies hate speech within these transcripts, and subsequently locates the corresponding audio time frames. Conversely, the E2E approach processes audio utterances directly, which allows it to pinpoint hate speech within specific time frames. Additionally, due to the lack of explainable audio hate speech datasets that include audio frame-level rationales, we curated a synthetic audio dataset to train our models. We further validated these models on actual human speech utterances and found that the E2E approach outperforms the cascading method in terms of the audio frame Intersection over Union (IoU) metric. Furthermore, we observed that including frame-level rationales significantly enhances hate speech detection accuracy for the E2E approach. \textbf{Disclaimer} The reader may encounter content of an offensive or hateful nature. However, given the nature of the work, this cannot be avoided.
Abstract:While machines learn from existing corpora, humans have the unique capability to establish and accept new language systems. This makes human form unique language systems within social groups. Aligning with this, we focus on a gap remaining in addressing translation challenges within social groups, where in-group members utilize unique terminologies. We propose KpopMT dataset, which aims to fill this gap by enabling precise terminology translation, choosing Kpop fandom as an initiative for social groups given its global popularity. Expert translators provide 1k English translations for Korean posts and comments, each annotated with specific terminology within social groups' language systems. We evaluate existing translation systems including GPT models on KpopMT to identify their failure cases. Results show overall low scores, underscoring the challenges of reflecting group-specific terminologies and styles in translation. We make KpopMT publicly available.
Abstract:Remarkable advances in large language models (LLMs) have enabled high-quality text summarization. However, this capability is currently accessible only through LLMs of substantial size or proprietary LLMs with usage fees. In response, smaller-scale LLMs (sLLMs) of easy accessibility and low costs have been extensively studied, yet they often suffer from missing key information and entities, i.e., low relevance, in particular, when input documents are long. We hence propose a key-element-informed instruction tuning for summarization, so-called KEITSum, which identifies key elements in documents and instructs sLLM to generate summaries capturing these key elements. Experimental results on dialogue and news datasets demonstrate that sLLM with KEITSum indeed provides high-quality summarization with higher relevance and less hallucinations, competitive to proprietary LLM.
Abstract:The evaluation of summary quality encompasses diverse dimensions such as consistency, coherence, relevance, and fluency. However, existing summarization methods often target a specific dimension, facing challenges in generating well-balanced summaries across multiple dimensions. In this paper, we propose multi-objective reinforcement learning tailored to generate balanced summaries across all four dimensions. We introduce two multi-dimensional optimization (MDO) strategies for adaptive learning: 1) MDO_min, rewarding the current lowest dimension score, and 2) MDO_pro, optimizing multiple dimensions similar to multi-task learning, resolves conflicting gradients across dimensions through gradient projection. Unlike prior ROUGE-based rewards relying on reference summaries, we use a QA-based reward model that aligns with human preferences. Further, we discover the capability to regulate the length of summaries by adjusting the discount factor, seeking the generation of concise yet informative summaries that encapsulate crucial points. Our approach achieved substantial performance gains compared to baseline models on representative summarization datasets, particularly in the overlooked dimensions.
Abstract:Contemporary neural speech synthesis models have indeed demonstrated remarkable proficiency in synthetic speech generation as they have attained a level of quality comparable to that of human-produced speech. Nevertheless, it is important to note that these achievements have predominantly been verified within the context of high-resource languages such as English. Furthermore, the Tacotron and FastSpeech variants show substantial pausing errors when applied to the Korean language, which affects speech perception and naturalness. In order to address the aforementioned issues, we propose a novel framework that incorporates comprehensive modeling of both syntactic and acoustic cues that are associated with pausing patterns. Remarkably, our framework possesses the capability to consistently generate natural speech even for considerably more extended and intricate out-of-domain (OOD) sentences, despite its training on short audio clips. Architectural design choices are validated through comparisons with baseline models and ablation studies using subjective and objective metrics, thus confirming model performance.
Abstract:This paper introduces Evalverse, a novel library that streamlines the evaluation of Large Language Models (LLMs) by unifying disparate evaluation tools into a single, user-friendly framework. Evalverse enables individuals with limited knowledge of artificial intelligence to easily request LLM evaluations and receive detailed reports, facilitated by an integration with communication platforms like Slack. Thus, Evalverse serves as a powerful tool for the comprehensive assessment of LLMs, offering both researchers and practitioners a centralized and easily accessible evaluation framework. Finally, we also provide a demo video for Evalverse, showcasing its capabilities and implementation in a two-minute format.