Abstract:With the growing demand to fit fine-grained user intents, faceted query-by-example (QBE), which retrieves similar documents conditioned on specific facets, has gained recent attention. However, prior approaches mainly depend on document-level comparisons using basic indicators like citations due to the lack of facet-level relevance datasets; yet, this limits their use to citation-based domains and fails to capture the intricacies of facet constraints. In this paper, we propose a multi-facet blending (FaBle) augmentation method, which exploits modularity by decomposing and recomposing to explicitly synthesize facet-specific training sets. We automatically decompose documents into facet units and generate (ir)relevant pairs by leveraging LLMs' intrinsic distinguishing capabilities; then, dynamically recomposing the units leads to facet-wise relevance-informed document pairs. Our modularization eliminates the need for pre-defined facet knowledge or labels. Further, to prove the FaBle's efficacy in a new domain beyond citation-based scientific paper retrieval, we release a benchmark dataset for educational exam item QBE. FaBle augmentation on 1K documents remarkably assists training in obtaining facet conditional embeddings.
Abstract:In this paper, we describe the development process of autonomous navigation capabilities of a small cruise boat operating in a canal environment and present the results of a field experiment conducted in the Pohang Canal, South Korea. Nonlinear model predictive control (NMPC) was used for the online trajectory planning and tracking control of the cruise boat in a narrow passage in the canal. To consider the nonlinear characteristics of boat dynamics, system identification was performed using experimental data from various test maneuvers, such as acceleration-deceleration and zigzag trials. To efficiently represent the obstacle structures in the canal environment, we parameterized the canal walls as line segments with point cloud data, captured by an onboard LiDAR sensor, and considered them as constraints for obstacle avoidance. The proposed method was implemented in a single NMPC layer, and its real-world performance was verified through experimental runs in the Pohang Canal.
Abstract:This paper presents a multimodal maritime dataset and the data collection procedure used to gather it, which aims to facilitate autonomous navigation in restricted water environments. The dataset comprises measurements obtained using various perception and navigation sensors, including a stereo camera, an infrared camera, an omnidirectional camera, three LiDARs, a marine radar, a global positioning system, and an attitude heading reference system. The data were collected along a 7.5-km-long route that includes a narrow canal, inner and outer ports, and near-coastal areas in Pohang, South Korea. The collection was conducted under diverse weather and visual conditions. The dataset and its detailed description are available for free download at https://sites.google.com/view/pohang-canal-dataset.