Abstract:Over the last few decades, numerous LiDAR-inertial odometry (LIO) algorithms have been developed, demonstrating satisfactory performance across diverse environments. Most of these algorithms have predominantly been validated in open outdoor environments, however they often encounter challenges in confined indoor settings. In such indoor environments, reliable point cloud registration becomes problematic due to the rapid changes in LiDAR scans and repetitive structural features like walls and stairs, particularly in multifloor buildings. In this paper, we present NV-LIO, a normal vector based LIO framework, designed for simultaneous localization and mapping (SLAM) in indoor environments with multifloor structures. Our approach extracts the normal vectors from the LiDAR scans and utilizes them for correspondence search to enhance the point cloud registration performance. To ensure robust registration, the distribution of the normal vector directions is analyzed, and situations of degeneracy are examined to adjust the matching uncertainty. Additionally, a viewpoint based loop closure module is implemented to avoid wrong correspondences that are blocked by the walls. The propsed method is validated through public datasets and our own dataset. To contribute to the community, the code will be made public on https://github.com/dhchung/nv_lio.
Abstract:This paper proposes a novel approach for modeling and controlling nonlinear systems with varying parameters. The approach introduces the use of a parameter-varying Koopman operator (PVKO) in a lifted space, which provides an efficient way to understand system behavior and design control algorithms that account for underlying dynamics and changing parameters. The PVKO builds on a conventional Koopman model by incorporating local time-invariant linear systems through interpolation within the lifted space. This paper outlines a procedure for identifying the PVKO and designing a model predictive control using the identified PVKO model. Simulation results demonstrate that the proposed approach improves model accuracy and enables predictions based on future parameter information. The feasibility and stability of the proposed control approach are analyzed, and their effectiveness is demonstrated through simulation.
Abstract:In this paper, we describe the development process of autonomous navigation capabilities of a small cruise boat operating in a canal environment and present the results of a field experiment conducted in the Pohang Canal, South Korea. Nonlinear model predictive control (NMPC) was used for the online trajectory planning and tracking control of the cruise boat in a narrow passage in the canal. To consider the nonlinear characteristics of boat dynamics, system identification was performed using experimental data from various test maneuvers, such as acceleration-deceleration and zigzag trials. To efficiently represent the obstacle structures in the canal environment, we parameterized the canal walls as line segments with point cloud data, captured by an onboard LiDAR sensor, and considered them as constraints for obstacle avoidance. The proposed method was implemented in a single NMPC layer, and its real-world performance was verified through experimental runs in the Pohang Canal.
Abstract:This paper presents a multimodal maritime dataset and the data collection procedure used to gather it, which aims to facilitate autonomous navigation in restricted water environments. The dataset comprises measurements obtained using various perception and navigation sensors, including a stereo camera, an infrared camera, an omnidirectional camera, three LiDARs, a marine radar, a global positioning system, and an attitude heading reference system. The data were collected along a 7.5-km-long route that includes a narrow canal, inner and outer ports, and near-coastal areas in Pohang, South Korea. The collection was conducted under diverse weather and visual conditions. The dataset and its detailed description are available for free download at https://sites.google.com/view/pohang-canal-dataset.