Abstract:Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.
Abstract:Knowledge Graph-to-Text (G2T) generation involves verbalizing structured knowledge graphs into natural language text. Recent advancements in Pretrained Language Models (PLMs) have improved G2T performance, but their effectiveness depends on datasets with precise graph-text alignment. However, the scarcity of high-quality, general-domain G2T generation datasets restricts progress in the general-domain G2T generation research. To address this issue, we introduce Wikipedia Ontology-Free Graph-text dataset (WikiOFGraph), a new large-scale G2T dataset generated using a novel method that leverages Large Language Model (LLM) and Data-QuestEval. Our new dataset, which contains 5.85M general-domain graph-text pairs, offers high graph-text consistency without relying on external ontologies. Experimental results demonstrate that PLM fine-tuned on WikiOFGraph outperforms those trained on other datasets across various evaluation metrics. Our method proves to be a scalable and effective solution for generating high-quality G2T data, significantly advancing the field of G2T generation.
Abstract:In table-text open-domain question answering, a retriever system retrieves relevant evidence from tables and text to answer questions. Previous studies in table-text open-domain question answering have two common challenges: firstly, their retrievers can be affected by false-positive labels in training datasets; secondly, they may struggle to provide appropriate evidence for questions that require reasoning across the table. To address these issues, we propose Denoised Table-Text Retriever (DoTTeR). Our approach involves utilizing a denoised training dataset with fewer false positive labels by discarding instances with lower question-relevance scores measured through a false positive detection model. Subsequently, we integrate table-level ranking information into the retriever to assist in finding evidence for questions that demand reasoning across the table. To encode this ranking information, we fine-tune a rank-aware column encoder to identify minimum and maximum values within a column. Experimental results demonstrate that DoTTeR significantly outperforms strong baselines on both retrieval recall and downstream QA tasks. Our code is available at https://github.com/deokhk/DoTTeR.