Abstract:Generative retrieval has recently emerged as a new alternative of traditional information retrieval approaches. However, existing generative retrieval methods directly decode docid when a query is given, making it impossible to provide users with explanations as an answer for "Why this document is retrieved?". To address this limitation, we propose Hierarchical Category Path-Enhanced Generative Retrieval(HyPE), which enhances explainability by generating hierarchical category paths step-by-step before decoding docid. HyPE leverages hierarchical category paths as explanation, progressing from broad to specific semantic categories. This approach enables diverse explanations for the same document depending on the query by using shared category paths between the query and the document, and provides reasonable explanation by reflecting the document's semantic structure through a coarse-to-fine manner. HyPE constructs category paths with external high-quality semantic hierarchy, leverages LLM to select appropriate candidate paths for each document, and optimizes the generative retrieval model with path-augmented dataset. During inference, HyPE utilizes path-aware reranking strategy to aggregate diverse topic information, allowing the most relevant documents to be prioritized in the final ranked list of docids. Our extensive experiments demonstrate that HyPE not only offers a high level of explainability but also improves the retrieval performance in the document retrieval task.
Abstract:Academic paper search is an essential task for efficient literature discovery and scientific advancement. While dense retrieval has advanced various ad-hoc searches, it often struggles to match the underlying academic concepts between queries and documents, which is critical for paper search. To enable effective academic concept matching for paper search, we propose Taxonomy-guided Semantic Indexing (TaxoIndex) framework. TaxoIndex extracts key concepts from papers and organizes them as a semantic index guided by an academic taxonomy, and then leverages this index as foundational knowledge to identify academic concepts and link queries and documents. As a plug-and-play framework, TaxoIndex can be flexibly employed to enhance existing dense retrievers. Extensive experiments show that TaxoIndex brings significant improvements, even with highly limited training data, and greatly enhances interpretability.
Abstract:Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
Abstract:Cross-lingual entity alignment (EA) enables the integration of multiple knowledge graphs (KGs) across different languages, providing users with seamless access to diverse and comprehensive knowledge.Existing methods, mostly supervised, face challenges in obtaining labeled entity pairs. To address this, recent studies have shifted towards a self-supervised and unsupervised frameworks. Despite their effectiveness, these approaches have limitations: (1) they mainly focus on entity features, neglecting the semantic information of relations, (2) they assume isomorphism between source and target graphs, leading to noise and reduced alignment accuracy, and (3) they are susceptible to noise in the textual features, especially when encountering inconsistent translations or Out-Of-Vocabulary (OOV) problems. In this paper, we propose ERAlign, an unsupervised and robust cross-lingual EA framework that jointly performs Entity-level and Relation-level Alignment using semantic textual features of relations and entities. Its refinement process iteratively enhances results by fusing entity-level and relation-level alignments based on neighbor triple matching. The additional verification process examines the entities' neighbor triples as the linearized text. This \textit{Align-and-Verify} pipeline that rigorously assesses alignment results, achieving near-perfect alignment even in the presence of noisy textual features of entities. Our extensive experiments demonstrate that robustness and general applicability of \proposed improved the accuracy and effectiveness of EA tasks, contributing significantly to knowledge-oriented applications.
Abstract:Despite its breakthrough in classification problems, Knowledge distillation (KD) to recommendation models and ranking problems has not been studied well in the previous literature. This dissertation is devoted to developing knowledge distillation methods for recommender systems to fully improve the performance of a compact model. We propose novel distillation methods designed for recommender systems. The proposed methods are categorized according to their knowledge sources as follows: (1) Latent knowledge: we propose two methods that transfer latent knowledge of user/item representation. They effectively transfer knowledge of niche tastes with a balanced distillation strategy that prevents the KD process from being biased towards a small number of large preference groups. Also, we propose a new method that transfers user/item relations in the representation space. The proposed method selectively transfers essential relations considering the limited capacity of the compact model. (2) Ranking knowledge: we propose three methods that transfer ranking knowledge from the recommendation results. They formulate the KD process as a ranking matching problem and transfer the knowledge via a listwise learning strategy. Further, we present a new learning framework that compresses the ranking knowledge of heterogeneous recommendation models. The proposed framework is developed to ease the computational burdens of model ensemble which is a dominant solution for many recommendation applications. We validate the benefit of our proposed methods and frameworks through extensive experiments. To summarize, this dissertation sheds light on knowledge distillation approaches for a better accuracy-efficiency trade-off of the recommendation models.
Abstract:Label noise, commonly found in real-world datasets, has a detrimental impact on a model's generalization. To effectively detect incorrectly labeled instances, previous works have mostly relied on distinguishable training signals, such as training loss, as indicators to differentiate between clean and noisy labels. However, they have limitations in that the training signals incompletely reveal the model's behavior and are not effectively generalized to various noise types, resulting in limited detection accuracy. In this paper, we propose DynaCor framework that distinguishes incorrectly labeled instances from correctly labeled ones based on the dynamics of the training signals. To cope with the absence of supervision for clean and noisy labels, DynaCor first introduces a label corruption strategy that augments the original dataset with intentionally corrupted labels, enabling indirect simulation of the model's behavior on noisy labels. Then, DynaCor learns to identify clean and noisy instances by inducing two clearly distinguishable clusters from the latent representations of training dynamics. Our comprehensive experiments show that DynaCor outperforms the state-of-the-art competitors and shows strong robustness to various noise types and noise rates.
Abstract:Knowledge distillation (KD) has emerged as a promising technique for addressing the computational challenges associated with deploying large-scale recommender systems. KD transfers the knowledge of a massive teacher system to a compact student model, to reduce the huge computational burdens for inference while retaining high accuracy. The existing KD studies primarily focus on one-time distillation in static environments, leaving a substantial gap in their applicability to real-world scenarios dealing with continuously incoming users, items, and their interactions. In this work, we delve into a systematic approach to operating the teacher-student KD in a non-stationary data stream. Our goal is to enable efficient deployment through a compact student, which preserves the high performance of the massive teacher, while effectively adapting to continuously incoming data. We propose Continual Collaborative Distillation (CCD) framework, where both the teacher and the student continually and collaboratively evolve along the data stream. CCD facilitates the student in effectively adapting to new data, while also enabling the teacher to fully leverage accumulated knowledge. We validate the effectiveness of CCD through extensive quantitative, ablative, and exploratory experiments on two real-world datasets. We expect this research direction to contribute to narrowing the gap between existing KD studies and practical applications, thereby enhancing the applicability of KD in real-world systems.
Abstract:Recently, web platforms have been operating various service domains simultaneously. Targeting a platform that operates multiple service domains, we introduce a new task, Multi-Domain Recommendation to Attract Users (MDRAU), which recommends items from multiple ``unseen'' domains with which each user has not interacted yet, by using knowledge from the user's ``seen'' domains. In this paper, we point out two challenges of MDRAU task. First, there are numerous possible combinations of mappings from seen to unseen domains because users have usually interacted with a different subset of service domains. Second, a user might have different preferences for each of the target unseen domains, which requires that recommendations reflect the user's preferences on domains as well as items. To tackle these challenges, we propose DRIP framework that models users' preferences at two levels (i.e., domain and item) and learns various seen-unseen domain mappings in a unified way with masked domain modeling. Our extensive experiments demonstrate the effectiveness of DRIP in MDRAU task and its ability to capture users' domain-level preferences.
Abstract:Conversational recommender system is an emerging area that has garnered an increasing interest in the community, especially with the advancements in large language models (LLMs) that enable diverse reasoning over conversational input. Despite the progress, the field has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that utterances in PEARL include more specific user preferences, show expertise in the target domain, and provide recommendations more relevant to the dialogue context than those in prior datasets.
Abstract:Document retrieval has greatly benefited from the advancements of large-scale pre-trained language models (PLMs). However, their effectiveness is often limited in theme-specific applications for specialized areas or industries, due to unique terminologies, incomplete contexts of user queries, and specialized search intents. To capture the theme-specific information and improve retrieval, we propose to use a corpus topical taxonomy, which outlines the latent topic structure of the corpus while reflecting user-interested aspects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval) framework, which identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts. As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers. Through extensive quantitative, ablative, and exploratory experiments on two real-world datasets, we ascertain the benefits of using topical taxonomy for retrieval in theme-specific applications and demonstrate the effectiveness of ToTER.