Abstract:Medical tasks such as diagnosis and treatment planning require precise and complex reasoning, particularly in life-critical domains. Unlike mathematical reasoning, medical reasoning demands meticulous, verifiable thought processes to ensure reliability and accuracy. However, there is a notable lack of datasets that provide transparent, step-by-step reasoning to validate and enhance the medical reasoning ability of AI models. To bridge this gap, we introduce MedReason, a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or ``thinking paths'', which trace connections from question elements to answers via relevant KG entities. Each path is validated for consistency with clinical logic and evidence-based medicine. Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of 32,682 question-answer pairs, each with detailed, step-by-step explanations. Experiments demonstrate that fine-tuning with our dataset consistently boosts medical problem-solving capabilities, achieving significant gains of up to 7.7% for DeepSeek-Ditill-8B. Our top-performing model, MedReason-8B, outperforms the Huatuo-o1-8B, a state-of-the-art medical reasoning model, by up to 4.2% on the clinical benchmark MedBullets. We also engage medical professionals from diverse specialties to assess our dataset's quality, ensuring MedReason offers accurate and coherent medical reasoning. Our data, models, and code will be publicly available.
Abstract:Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
Abstract:Short-term object interaction anticipation is an important task in egocentric video analysis, including precise predictions of future interactions and their timings as well as the categories and positions of the involved active objects. To alleviate the complexity of this task, our proposed method, SOIA-DOD, effectively decompose it into 1) detecting active object and 2) classifying interaction and predicting their timing. Our method first detects all potential active objects in the last frame of egocentric video by fine-tuning a pre-trained YOLOv9. Then, we combine these potential active objects as query with transformer encoder, thereby identifying the most promising next active object and predicting its future interaction and time-to-contact. Experimental results demonstrate that our method outperforms state-of-the-art models on the challenge test set, achieving the best performance in predicting next active objects and their interactions. Finally, our proposed ranked the third overall top-5 mAP when including time-to-contact predictions. The source code is available at https://github.com/KeenyJin/SOIA-DOD.
Abstract:Recent studies have investigated utilizing Knowledge Graphs (KGs) to enhance Quesetion Answering (QA) performance of Large Language Models (LLMs), yet structured KG verbalization remains challengin. Existing methods, such as triple-form or free-form textual conversion of triple-form facts, encounter several issues. These include reduced evidence density due to duplicated entities or relationships, and reduced evidence clarity due to an inability to emphasize crucial evidence. To address these issues, we propose EFSum, an Evidence-focused Fact Summarization framework for enhanced QA with knowledge-augmented LLMs. We optimize an open-source LLM as a fact summarizer through distillation and preference alignment. Our extensive experiments show that EFSum improves LLM's zero-shot QA performance, and it is possible to ensure both the helpfulness and faithfulness of the summary.