Abstract:Property inheritance -- a phenomenon where novel properties are projected from higher level categories (e.g., birds) to lower level ones (e.g., sparrows) -- provides a unique window into how humans organize and deploy conceptual knowledge. It is debated whether this ability arises due to explicitly stored taxonomic knowledge vs. simple computations of similarity between mental representations. How are these mechanistic hypotheses manifested in contemporary language models? In this work, we investigate how LMs perform property inheritance with behavioral and causal representational analysis experiments. We find that taxonomy and categorical similarities are not mutually exclusive in LMs' property inheritance behavior. That is, LMs are more likely to project novel properties from one category to the other when they are taxonomically related and at the same time, highly similar. Our findings provide insight into the conceptual structure of language models and may suggest new psycholinguistic experiments for human subjects.
Abstract:Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
Abstract:We present Lil-Bevo, our submission to the BabyLM Challenge. We pretrained our masked language models with three ingredients: an initial pretraining with music data, training on shorter sequences before training on longer ones, and masking specific tokens to target some of the BLiMP subtasks. Overall, our baseline models performed above chance, but far below the performance levels of larger LLMs trained on more data. We found that training on short sequences performed better than training on longer sequences.Pretraining on music may help performance marginally, but, if so, the effect seems small. Our targeted Masked Language Modeling augmentation did not seem to improve model performance in general, but did seem to help on some of the specific BLiMP tasks that we were targeting (e.g., Negative Polarity Items). Training performant LLMs on small amounts of data is a difficult but potentially informative task. While some of our techniques showed some promise, more work is needed to explore whether they can improve performance more than the modest gains here. Our code is available at https://github.com/venkatasg/Lil-Bevo and out models at https://huggingface.co/collections/venkatasg/babylm-653591cdb66f4bf68922873a
Abstract:Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including classic token alignment from machine translation, textual entailment methods that localize their decisions, and prompting of large language models. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance.
Abstract:Models for textual entailment have increasingly been applied to settings like fact-checking, presupposition verification in question answering, and validating that generation models' outputs are faithful to a source. However, such applications are quite far from the settings that existing datasets are constructed in. We propose WiCE, a new textual entailment dataset centered around verifying claims in text, built on real-world claims and evidence in Wikipedia with fine-grained annotations. We collect sentences in Wikipedia that cite one or more webpages and annotate whether the content on those pages entails those sentences. Negative examples arise naturally, from slight misinterpretation of text to minor aspects of the sentence that are not attested in the evidence. Our annotations are over sub-sentence units of the hypothesis, decomposed automatically by GPT-3, each of which is labeled with a subset of evidence sentences from the source document. We show that real claims in our dataset involve challenging verification problems, and we benchmark existing approaches on this dataset. In addition, we show that reducing the complexity of claims by decomposing them by GPT-3 can improve entailment models' performance on various domains.
Abstract:Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (\url{https://github.com/GEM-benchmark/NL-Augmenter}).
Abstract:Developing documentation guidelines and easy-to-use templates for datasets and models is a challenging task, especially given the variety of backgrounds, skills, and incentives of the people involved in the building of natural language processing (NLP) tools. Nevertheless, the adoption of standard documentation practices across the field of NLP promotes more accessible and detailed descriptions of NLP datasets and models, while supporting researchers and developers in reflecting on their work. To help with the standardization of documentation, we present two case studies of efforts that aim to develop reusable documentation templates -- the HuggingFace data card, a general purpose card for datasets in NLP, and the GEM benchmark data and model cards with a focus on natural language generation. We describe our process for developing these templates, including the identification of relevant stakeholder groups, the definition of a set of guiding principles, the use of existing templates as our foundation, and iterative revisions based on feedback.
Abstract:We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. However, due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of corpora and evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the initial release for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.