Abstract:Recent LiDAR-based 3D Object Detection (3DOD) methods show promising results, but they often do not generalize well to target domains outside the source (or training) data distribution. To reduce such domain gaps and thus to make 3DOD models more generalizable, we introduce a novel unsupervised domain adaptation (UDA) method, called CMDA, which (i) leverages visual semantic cues from an image modality (i.e., camera images) as an effective semantic bridge to close the domain gap in the cross-modal Bird's Eye View (BEV) representations. Further, (ii) we also introduce a self-training-based learning strategy, wherein a model is adversarially trained to generate domain-invariant features, which disrupt the discrimination of whether a feature instance comes from a source or an unseen target domain. Overall, our CMDA framework guides the 3DOD model to generate highly informative and domain-adaptive features for novel data distributions. In our extensive experiments with large-scale benchmarks, such as nuScenes, Waymo, and KITTI, those mentioned above provide significant performance gains for UDA tasks, achieving state-of-the-art performance.
Abstract:Recently, alpha matting has received a lot of attention because of its usefulness in mobile applications such as selfies. Therefore, there has been a demand for a lightweight alpha matting model due to the limited computational resources of commercial portable devices. To this end, we suggest a distillation-based channel pruning method for the alpha matting networks. In the pruning step, we remove channels of a student network having fewer impacts on mimicking the knowledge of a teacher network. Then, the pruned lightweight student network is trained by the same distillation loss. A lightweight alpha matting model from the proposed method outperforms existing lightweight methods. To show superiority of our algorithm, we provide various quantitative and qualitative experiments with in-depth analyses. Furthermore, we demonstrate the versatility of the proposed distillation-based channel pruning method by applying it to semantic segmentation.
Abstract:In this paper, we introduce source domain subset sampling (SDSS) as a new perspective of semi-supervised domain adaptation. We propose domain adaptation by sampling and exploiting only a meaningful subset from source data for training. Our key assumption is that the entire source domain data may contain samples that are unhelpful for the adaptation. Therefore, the domain adaptation can benefit from a subset of source data composed solely of helpful and relevant samples. The proposed method effectively subsamples full source data to generate a small-scale meaningful subset. Therefore, training time is reduced, and performance is improved with our subsampled source data. To further verify the scalability of our method, we construct a new dataset called Ocean Ship, which comprises 500 real and 200K synthetic sample images with ground-truth labels. The SDSS achieved a state-of-the-art performance when applied on GTA5 to Cityscapes and SYNTHIA to Cityscapes public benchmark datasets and a 9.13 mIoU improvement on our Ocean Ship dataset over a baseline model.
Abstract:In this paper, we propose a robust and efficient end-to-end non-local spatial propagation network for depth completion. The proposed network takes RGB and sparse depth images as inputs and estimates non-local neighbors and their affinities of each pixel, as well as an initial depth map with pixel-wise confidences. The initial depth prediction is then iteratively refined by its confidence and non-local spatial propagation procedure based on the predicted non-local neighbors and corresponding affinities. Unlike previous algorithms that utilize fixed-local neighbors, the proposed algorithm effectively avoids irrelevant local neighbors and concentrates on relevant non-local neighbors during propagation. In addition, we introduce a learnable affinity normalization to better learn the affinity combinations compared to conventional methods. The proposed algorithm is inherently robust to the mixed-depth problem on depth boundaries, which is one of the major issues for existing depth estimation/completion algorithms. Experimental results on indoor and outdoor datasets demonstrate that the proposed algorithm is superior to conventional algorithms in terms of depth completion accuracy and robustness to the mixed-depth problem. Our implementation is publicly available on the project page.
Abstract:We present a simple yet effective prediction module for a one-stage detector. The main process is conducted in a coarse-to-fine manner. First, the module roughly adjusts the default boxes to well capture the extent of target objects in an image. Second, given the adjusted boxes, the module aligns the receptive field of the convolution filters accordingly, not requiring any embedding layers. Both steps build a propose-and-attend mechanism, mimicking two-stage detectors in a highly efficient manner. To verify its effectiveness, we apply the proposed module to a basic one-stage detector SSD. Our final model achieves an accuracy comparable to that of state-of-the-art detectors while using a fraction of their model parameters and computational overheads. Moreover, we found that the proposed module has two strong applications. 1) The module can be successfully integrated into a lightweight backbone, further pushing the efficiency of the one-stage detector. 2) The module also allows train-from-scratch without relying on any sophisticated base networks as previous methods do.
Abstract:In this paper, we propose a noise-aware exposure control algorithm for robust robot vision. Our method aims to capture the best-exposed image which can boost the performance of various computer vision and robotics tasks. For this purpose, we carefully design an image quality metric which captures complementary quality attributes and ensures light-weight computation. Specifically, our metric consists of a combination of image gradient, entropy, and noise metrics. The synergy of these measures allows preserving sharp edge and rich texture in the image while maintaining a low noise level. Using this novel metric, we propose a real-time and fully automatic exposure and gain control technique based on the Nelder-Mead method. To illustrate the effectiveness of our technique, a large set of experimental results demonstrates higher qualitative and quantitative performances when compared with conventional approaches.
Abstract:This paper proposes a weakly- and self-supervised deep convolutional neural network (WSSDCNN) for content-aware image retargeting. Our network takes a source image and a target aspect ratio, and then directly outputs a retargeted image. Retargeting is performed through a shift map, which is a pixel-wise mapping from the source to the target grid. Our method implicitly learns an attention map, which leads to a content-aware shift map for image retargeting. As a result, discriminative parts in an image are preserved, while background regions are adjusted seamlessly. In the training phase, pairs of an image and its image-level annotation are used to compute content and structure losses. We demonstrate the effectiveness of our proposed method for a retargeting application with insightful analyses.
Abstract:In this paper, we introduce robust and synergetic hand-crafted features and a simple but efficient deep feature from a convolutional neural network (CNN) architecture for defocus estimation. This paper systematically analyzes the effectiveness of different features, and shows how each feature can compensate for the weaknesses of other features when they are concatenated. For a full defocus map estimation, we extract image patches on strong edges sparsely, after which we use them for deep and hand-crafted feature extraction. In order to reduce the degree of patch-scale dependency, we also propose a multi-scale patch extraction strategy. A sparse defocus map is generated using a neural network classifier followed by a probability-joint bilateral filter. The final defocus map is obtained from the sparse defocus map with guidance from an edge-preserving filtered input image. Experimental results show that our algorithm is superior to state-of-the-art algorithms in terms of defocus estimation. Our work can be used for applications such as segmentation, blur magnification, all-in-focus image generation, and 3-D estimation.