Abstract:Event cameras are biologically inspired sensors that emit events asynchronously with remarkable temporal resolution, garnering significant attention from both industry and academia. Mainstream methods favor frame and voxel representations, which reach a satisfactory performance while introducing time-consuming transformation, bulky models, and sacrificing fine-grained temporal information. Alternatively, Point Cloud representation demonstrates promise in addressing the mentioned weaknesses, but it ignores the polarity information, and its models have limited proficiency in abstracting long-term events' features. In this paper, we propose a frequency-aware network named FECNet that leverages Event Cloud representations. FECNet fully utilizes 2S-1T-1P Event Cloud by innovating the event-based Group and Sampling module. To accommodate the long sequence events from Event Cloud, FECNet embraces feature extraction in the frequency domain via the Fourier transform. This approach substantially extinguishes the explosion of Multiply Accumulate Operations (MACs) while effectively abstracting spatial-temporal features. We conducted extensive experiments on event-based object classification, action recognition, and human pose estimation tasks, and the results substantiate the effectiveness and efficiency of FECNet.
Abstract:Spiking Neural Networks (SNNs) are seen as an energy-efficient alternative to traditional Artificial Neural Networks (ANNs), but the performance gap remains a challenge. While this gap is narrowing through ANN-to-SNN conversion, substantial computational resources are still needed, and the energy efficiency of converted SNNs cannot be ensured. To address this, we present a unified training-free conversion framework that significantly enhances both the performance and efficiency of converted SNNs. Inspired by the biological nervous system, we propose a novel Adaptive-Firing Neuron Model (AdaFire), which dynamically adjusts firing patterns across different layers to substantially reduce the Unevenness Error - the primary source of error of converted SNNs within limited inference timesteps. We further introduce two efficiency-enhancing techniques: the Sensitivity Spike Compression (SSC) technique for reducing spike operations, and the Input-aware Adaptive Timesteps (IAT) technique for decreasing latency. These methods collectively enable our approach to achieve state-of-the-art performance while delivering significant energy savings of up to 70.1%, 60.3%, and 43.1% on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively. Extensive experiments across 2D, 3D, event-driven classification tasks, object detection, and segmentation tasks, demonstrate the effectiveness of our method in various domains. The code is available at: https://github.com/bic-L/burst-ann2snn.
Abstract:Conventional frame-based cameras inevitably produce blurry effects due to motion occurring during the exposure time. Event camera, a bio-inspired sensor offering continuous visual information could enhance the deblurring performance. Effectively utilizing the high-temporal-resolution event data is crucial for extracting precise motion information and enhancing deblurring performance. However, existing event-based image deblurring methods usually utilize voxel-based event representations, losing the fine-grained temporal details that are mathematically essential for fast motion deblurring. In this paper, we first introduce point cloud-based event representation into the image deblurring task and propose a Multi-Temporal Granularity Network (MTGNet). It combines the spatially dense but temporally coarse-grained voxel-based event representation and the temporally fine-grained but spatially sparse point cloud-based event. To seamlessly integrate such complementary representations, we design a Fine-grained Point Branch. An Aggregation and Mapping Module (AMM) is proposed to align the low-level point-based features with frame-based features and an Adaptive Feature Diffusion Module (AFDM) is designed to manage the resolution discrepancies between event data and image data by enriching the sparse point feature. Extensive subjective and objective evaluations demonstrate that our method outperforms current state-of-the-art approaches on both synthetic and real-world datasets.
Abstract:Human emotion synthesis is a crucial aspect of affective computing. It involves using computational methods to mimic and convey human emotions through various modalities, with the goal of enabling more natural and effective human-computer interactions. Recent advancements in generative models, such as Autoencoders, Generative Adversarial Networks, Diffusion Models, Large Language Models, and Sequence-to-Sequence Models, have significantly contributed to the development of this field. However, there is a notable lack of comprehensive reviews in this field. To address this problem, this paper aims to address this gap by providing a thorough and systematic overview of recent advancements in human emotion synthesis based on generative models. Specifically, this review will first present the review methodology, the emotion models involved, the mathematical principles of generative models, and the datasets used. Then, the review covers the application of different generative models to emotion synthesis based on a variety of modalities, including facial images, speech, and text. It also examines mainstream evaluation metrics. Additionally, the review presents some major findings and suggests future research directions, providing a comprehensive understanding of the role of generative technology in the nuanced domain of emotion synthesis.
Abstract:Recently, there is growing demand for effective and efficient long sequence modeling, with State Space Models (SSMs) proving to be effective for long sequence tasks. To further reduce energy consumption, SSMs can be adapted to Spiking Neural Networks (SNNs) using spiking functions. However, current spiking-formalized SSMs approaches still rely on float-point matrix-vector multiplication during inference, undermining SNNs' energy advantage. In this work, we address the efficiency and performance challenges of long sequence learning in SNNs simultaneously. First, we propose a decoupled reset method for parallel spiking neuron training, reducing the typical Leaky Integrate-and-Fire (LIF) model's training time from $O(L^2)$ to $O(L\log L)$, effectively speeding up the training by $6.57 \times$ to $16.50 \times$ on sequence lengths $1,024$ to $32,768$. To our best knowledge, this is the first time that parallel computation with a reset mechanism is implemented achieving equivalence to its sequential counterpart. Secondly, to capture long-range dependencies, we propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating membrane potential driven by a resonate mechanism from a differentiable reset function in the complex domain. The PRF enables efficient long sequence learning while maintaining parallel training. Finally, we demonstrate that the proposed spike-driven architecture using PRF achieves performance comparable to Structured SSMs (S4), with two orders of magnitude reduction in energy consumption, outperforming Transformer on Long Range Arena tasks.
Abstract:Affective computing stands at the forefront of artificial intelligence (AI), seeking to imbue machines with the ability to comprehend and respond to human emotions. Central to this field is emotion recognition, which endeavors to identify and interpret human emotional states from different modalities, such as speech, facial images, text, and physiological signals. In recent years, important progress has been made in generative models, including Autoencoder, Generative Adversarial Network, Diffusion Model, and Large Language Model. These models, with their powerful data generation capabilities, emerge as pivotal tools in advancing emotion recognition. However, up to now, there remains a paucity of systematic efforts that review generative technology for emotion recognition. This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024. Specifically, this survey will firstly introduce the mathematical principles of different generative models and the commonly used datasets. Subsequently, through a taxonomy, it will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities in several aspects, including data augmentation, feature extraction, semi-supervised learning, cross-domain, etc. Finally, the review will outline future research directions, emphasizing the potential of generative models to advance the field of emotion recognition and enhance the emotional intelligence of AI systems.
Abstract:Eye tracking is crucial for human-computer interaction in different domains. Conventional cameras encounter challenges such as power consumption and image quality during different eye movements, prompting the need for advanced solutions with ultra-fast, low-power, and accurate eye trackers. Event cameras, fundamentally designed to capture information about moving objects, exhibit low power consumption and high temporal resolution. This positions them as an alternative to traditional cameras in the realm of eye tracking. Nevertheless, existing event-based eye tracking networks neglect the pivotal sparse and fine-grained temporal information in events, resulting in unsatisfactory performance. Moreover, the energy-efficient features are further compromised by the use of excessively complex models, hindering efficient deployment on edge devices. In this paper, we utilize Point Cloud as the event representation to harness the high temporal resolution and sparse characteristics of events in eye tracking tasks. We rethink the point-based architecture PEPNet with preprocessing the long-term relationships between samples, leading to the innovative design of FAPNet. A frequency adaptive mechanism is designed to realize adaptive tracking according to the speed of the pupil movement and the Inter Sample LSTM module is introduced to utilize the temporal correlation between samples. In the Event-based Eye Tracking Challenge, we utilize vanilla PEPNet, which is the former work to achieve the $p_{10}$ accuracy of 97.95\%. On the SEET synthetic dataset, FAPNet can achieve state-of-the-art while consuming merely 10\% of the PEPNet's computational resources. Notably, the computational demand of FAPNet is independent of the sensor's spatial resolution, enhancing its applicability on resource-limited edge devices.
Abstract:Event cameras, drawing inspiration from biological systems, efficiently detect changes in ambient light with low latency and high dynamic range while consuming minimal power. The most current approach to processing event data often involves converting it into frame-based representations, which is well-established in traditional vision. However, this approach neglects the sparsity of event data, loses fine-grained temporal information during the transformation process, and increases the computational burden, making it ineffective for characterizing event camera properties. In contrast, Point Cloud is a popular representation for 3D processing and is better suited to match the sparse and asynchronous nature of the event camera. Nevertheless, despite the theoretical compatibility of point-based methods with event cameras, the results show a performance gap that is not yet satisfactory compared to frame-based methods. In order to bridge the performance gap, we propose EventMamba, an efficient and effective Point Cloud framework that achieves competitive results even compared to the state-of-the-art (SOTA) frame-based method in both classification and regression tasks. This notable accomplishment is facilitated by our rethinking of the distinction between Event Cloud and Point Cloud, emphasizing effective temporal information extraction through optimized network structures. Specifically, EventMamba leverages temporal aggregation and State Space Model (SSM) based Mamba boasting enhanced temporal information extraction capabilities. Through a hierarchical structure, EventMamba is adept at abstracting local and global spatial features and implicit and explicit temporal features. By adhering to the lightweight design principle, EventMamba delivers impressive results with minimal computational resource utilization, demonstrating its efficiency and effectiveness.
Abstract:This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge. The task of the challenge focuses on processing eye movement recorded with event cameras and predicting the pupil center of the eye. The challenge emphasizes efficient eye tracking with event cameras to achieve good task accuracy and efficiency trade-off. During the challenge period, 38 participants registered for the Kaggle competition, and 8 teams submitted a challenge factsheet. The novel and diverse methods from the submitted factsheets are reviewed and analyzed in this survey to advance future event-based eye tracking research.
Abstract:Event cameras exhibit remarkable attributes such as high dynamic range, asynchronicity, and low latency, making them highly suitable for vision tasks that involve high-speed motion in challenging lighting conditions. These cameras implicitly capture movement and depth information in events, making them appealing sensors for Camera Pose Relocalization (CPR) tasks. Nevertheless, existing CPR networks based on events neglect the pivotal fine-grained temporal information in events, resulting in unsatisfactory performance. Moreover, the energy-efficient features are further compromised by the use of excessively complex models, hindering efficient deployment on edge devices. In this paper, we introduce PEPNet, a simple and effective point-based network designed to regress six degrees of freedom (6-DOFs) event camera poses. We rethink the relationship between the event camera and CPR tasks, leveraging the raw Point Cloud directly as network input to harness the high-temporal resolution and inherent sparsity of events. PEPNet is adept at abstracting the spatial and implicit temporal features through hierarchical structure and explicit temporal features by Attentive Bi-directional Long Short-Term Memory (A-Bi-LSTM). By employing a carefully crafted lightweight design, PEPNet delivers state-of-the-art (SOTA) performance on both indoor and outdoor datasets with meager computational resources. Specifically, PEPNet attains a significant 38% and 33% performance improvement on the random split IJRR and M3ED datasets, respectively. Moreover, the lightweight design version PEPNet$_{tiny}$ accomplishes results comparable to the SOTA while employing a mere 0.5% of the parameters.