Abstract:The most recent pointwise Large Language Model (LLM) rankers have achieved remarkable ranking results. However, these rankers are hindered by two major drawbacks: (1) they fail to follow a standardized comparison guidance during the ranking process, and (2) they struggle with comprehensive considerations when dealing with complicated passages. To address these shortcomings, we propose to build a ranker that generates ranking scores based on a set of criteria from various perspectives. These criteria are intended to direct each perspective in providing a distinct yet synergistic evaluation. Our research, which examines eight datasets from the BEIR benchmark demonstrates that incorporating this multi-perspective criteria ensemble approach markedly enhanced the performance of pointwise LLM rankers.
Abstract:Active learning aims to construct an effective training set by iteratively curating the most informative unlabeled data for annotation, which is practical in low-resource tasks. Most active learning techniques in classification rely on the model's uncertainty or disagreement to choose unlabeled data. However, previous work indicates that existing models are poor at quantifying predictive uncertainty, which can lead to over-confidence in superficial patterns and a lack of exploration. Inspired by the cognitive processes in which humans deduce and predict through causal information, we propose a novel Explainable Active Learning framework (XAL) for low-resource text classification, which aims to encourage classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations. Specifically, besides using a pre-trained bi-directional encoder for classification, we employ a pre-trained uni-directional decoder to generate and score the explanation. A ranking loss is proposed to enhance the decoder's capability in scoring explanations. During the selection of unlabeled data, we combine the predictive uncertainty of the encoder and the explanation score of the decoder to acquire informative data for annotation. As XAL is a general framework for text classification, we test our methods on six different classification tasks. Extensive experiments show that XAL achieves substantial improvement on all six tasks over previous AL methods. Ablation studies demonstrate the effectiveness of each component, and human evaluation shows that the model trained in XAL performs surprisingly well in explaining its prediction.
Abstract:Cross-domain sentiment analysis aims to predict the sentiment of texts in the target domain using the model trained on the source domain to cope with the scarcity of labeled data. Previous studies are mostly cross-entropy-based methods for the task, which suffer from instability and poor generalization. In this paper, we explore contrastive learning on the cross-domain sentiment analysis task. We propose a modified contrastive objective with in-batch negative samples so that the sentence representations from the same class will be pushed close while those from the different classes become further apart in the latent space. Experiments on two widely used datasets show that our model can achieve state-of-the-art performance in both cross-domain and multi-domain sentiment analysis tasks. Meanwhile, visualizations demonstrate the effectiveness of transferring knowledge learned in the source domain to the target domain and the adversarial test verifies the robustness of our model.
Abstract:Automated event detection from news corpora is a crucial task towards mining fast-evolving structured knowledge. As real-world events have different granularities, from the top-level themes to key events and then to event mentions corresponding to concrete actions, there are generally two lines of research: (1) theme detection identifies from a news corpus major themes (e.g., "2019 Hong Kong Protests" vs. "2020 U.S. Presidential Election") that have very distinct semantics; and (2) action extraction extracts from one document mention-level actions (e.g., "the police hit the left arm of the protester") that are too fine-grained for comprehending the event. In this paper, we propose a new task, key event detection at the intermediate level, aiming to detect from a news corpus key events (e.g., "HK Airport Protest on Aug. 12-14"), each happening at a particular time/location and focusing on the same topic. This task can bridge event understanding and structuring and is inherently challenging because of the thematic and temporal closeness of key events and the scarcity of labeled data due to the fast-evolving nature of news articles. To address these challenges, we develop an unsupervised key event detection framework, EvMine, that (1) extracts temporally frequent peak phrases using a novel ttf-itf score, (2) merges peak phrases into event-indicative feature sets by detecting communities from our designed peak phrase graph that captures document co-occurrences, semantic similarities, and temporal closeness signals, and (3) iteratively retrieves documents related to each key event by training a classifier with automatically generated pseudo labels from the event-indicative feature sets and refining the detected key events using the retrieved documents. Extensive experiments and case studies show EvMine outperforms all the baseline methods and its ablations on two real-world news corpora.
Abstract:Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this paper, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, neglecting the benefit of coupling both, or are based on topic models that may contain overlapping concepts. We propose to first learn <sentiment, aspect> joint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4% and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets. Our code and data are available at https://github.com/teapot123/JASen.
Abstract:Aspect classification, identifying aspects of text segments, facilitates numerous applications, such as sentiment analysis and review summarization. To alleviate the human effort on annotating massive texts, in this paper, we study the problem of classifying aspects based on only a few user-provided seed words for pre-defined aspects. The major challenge lies in how to handle the noisy misc aspect, which is designed for texts without any pre-defined aspects. Even domain experts have difficulties to nominate seed words for the misc aspect, making existing seed-driven text classification methods not applicable. We propose a novel framework, ARYA, which enables mutual enhancements between pre-defined aspects and the misc aspect via iterative classifier training and seed updating. Specifically, it trains a classifier for pre-defined aspects and then leverages it to induce the supervision for the misc aspect. The prediction results of the misc aspect are later utilized to filter out noisy seed words for pre-defined aspects. Experiments in two domains demonstrate the superior performance of our proposed framework, as well as the necessity and importance of properly modeling the misc aspect.
Abstract:Heterogeneous information networks (HINs) are ubiquitous in real-world applications. In the meantime, network embedding has emerged as a convenient tool to mine and learn from networked data. As a result, it is of interest to develop HIN embedding methods. However, the heterogeneity in HINs introduces not only rich information but also potentially incompatible semantics, which poses special challenges to embedding learning in HINs. With the intention to preserve the rich yet potentially incompatible information in HIN embedding, we propose to study the problem of comprehensive transcription of heterogeneous information networks. The comprehensive transcription of HINs also provides an easy-to-use approach to unleash the power of HINs, since it requires no additional supervision, expertise, or feature engineering. To cope with the challenges in the comprehensive transcription of HINs, we propose the HEER algorithm, which embeds HINs via edge representations that are further coupled with properly-learned heterogeneous metrics. To corroborate the efficacy of HEER, we conducted experiments on two large-scale real-words datasets with an edge reconstruction task and multiple case studies. Experiment results demonstrate the effectiveness of the proposed HEER model and the utility of edge representations and heterogeneous metrics. The code and data are available at https://github.com/GentleZhu/HEER.
Abstract:In this work, we contribute to video saliency research in two ways. First, we introduce a new benchmark for predicting human eye movements during dynamic scene free-viewing, which is long-time urged in this field. Our dataset, named DHF1K (Dynamic Human Fixation), consists of 1K high-quality, elaborately selected video sequences spanning a large range of scenes, motions, object types and background complexity. Existing video saliency datasets lack variety and generality of common dynamic scenes and fall short in covering challenging situations in unconstrained environments. In contrast, DHF1K makes a significant leap in terms of scalability, diversity and difficulty, and is expected to boost video saliency modeling. Second, we propose a novel video saliency model that augments the CNN-LSTM network architecture with an attention mechanism to enable fast, end-to-end saliency learning. The attention mechanism explicitly encodes static saliency information, thus allowing LSTM to focus on learning more flexible temporal saliency representation across successive frames. Such a design fully leverages existing large-scale static fixation datasets, avoids overfitting, and significantly improves training efficiency and testing performance. We thoroughly examine the performance of our model, with respect to state-of-the-art saliency models, on three large-scale datasets (i.e., DHF1K, Hollywood2, UCF sports). Experimental results over more than 1.2K testing videos containing 400K frames demonstrate that our model outperforms other competitors.