Abstract:Large language models (LLMs) have exhibited impressive zero-shot performance on inference tasks. However, LLMs may suffer from spurious correlations between input texts and output labels, which limits LLMs' ability to reason based purely on general language understanding. In other words, LLMs may make predictions primarily based on premise or hypothesis, rather than both components. To address this problem that may lead to unexpected performance degradation, we propose task calibration (TC), a zero-shot and inference-only calibration method inspired by mutual information which recovers LLM performance through task reformulation. TC encourages LLMs to reason based on both premise and hypothesis, while mitigating the models' over-reliance on individual premise or hypothesis for inference. Experimental results show that TC achieves a substantial improvement on 13 inference tasks in the zero-shot setup. We further validate the effectiveness of TC in few-shot setups and various natural language understanding tasks. Further analysis indicates that TC is also robust to prompt templates and has the potential to be integrated with other calibration methods.
Abstract:Large language models (LLMs) have revolutionized knowledge storage and retrieval, but face challenges with conflicting and outdated information. Knowledge editing techniques have been proposed to address these issues, yet they struggle with robustness tests involving long contexts, paraphrased subjects, and continuous edits. This work investigates the cause of these failures in locate-and-edit methods, offering theoretical insights into their key-value modeling and deriving mathematical bounds for robust and specific edits, leading to a novel 'group discussion' conceptual model for locate-and-edit methods. Empirical analysis reveals that keys used by current methods fail to meet robustness and specificity requirements. To address this, we propose a Robust Edit Pathway (REP) that disentangles editing keys from LLMs' inner representations. Evaluations on LLaMA2-7B and Mistral-7B using the CounterFact dataset show that REP significantly improves robustness across various metrics, both in-domain and out-of-domain, with minimal trade-offs in success rate and locality. Our findings advance the development of reliable and flexible knowledge updating in LLMs.
Abstract:The rapid growth of scientific literature imposes significant challenges for researchers endeavoring to stay updated with the latest advancements in their fields and delve into new areas. We introduce OpenResearcher, an innovative platform that leverages Artificial Intelligence (AI) techniques to accelerate the research process by answering diverse questions from researchers. OpenResearcher is built based on Retrieval-Augmented Generation (RAG) to integrate Large Language Models (LLMs) with up-to-date, domain-specific knowledge. Moreover, we develop various tools for OpenResearcher to understand researchers' queries, search from the scientific literature, filter retrieved information, provide accurate and comprehensive answers, and self-refine these answers. OpenResearcher can flexibly use these tools to balance efficiency and effectiveness. As a result, OpenResearcher enables researchers to save time and increase their potential to discover new insights and drive scientific breakthroughs. Demo, video, and code are available at: https://github.com/GAIR-NLP/OpenResearcher.
Abstract:Large Language Models (LLMs) have shown impressive capabilities but also a concerning tendency to hallucinate. This paper presents RefChecker, a framework that introduces claim-triplets to represent claims in LLM responses, aiming to detect fine-grained hallucinations. In RefChecker, an extractor generates claim-triplets from a response, which are then evaluated by a checker against a reference. We delineate three task settings: Zero, Noisy and Accurate Context, to reflect various real-world use cases. We curated a benchmark spanning various NLP tasks and annotated 11k claim-triplets from 2.1k responses by seven LLMs. RefChecker supports both proprietary and open-source models as the extractor and checker. Experiments demonstrate that claim-triplets enable superior hallucination detection, compared to other granularities such as response, sentence and sub-sentence level claims. RefChecker outperforms prior methods by 6.8 to 26.1 points on our benchmark and the checking results of RefChecker are strongly aligned with human judgments. This work is open sourced at https://github.com/amazon-science/RefChecker
Abstract:The most recent pointwise Large Language Model (LLM) rankers have achieved remarkable ranking results. However, these rankers are hindered by two major drawbacks: (1) they fail to follow a standardized comparison guidance during the ranking process, and (2) they struggle with comprehensive considerations when dealing with complicated passages. To address these shortcomings, we propose to build a ranker that generates ranking scores based on a set of criteria from various perspectives. These criteria are intended to direct each perspective in providing a distinct yet synergistic evaluation. Our research, which examines eight datasets from the BEIR benchmark demonstrates that incorporating this multi-perspective criteria ensemble approach markedly enhanced the performance of pointwise LLM rankers.
Abstract:The application scope of large language models (LLMs) is increasingly expanding. In practical use, users might provide feedback based on the model's output, hoping for a responsive model that can complete responses according to their feedback. Whether the model can appropriately respond to users' refuting feedback and consistently follow through with execution has not been thoroughly analyzed. In light of this, this paper proposes a comprehensive benchmark, RefuteBench, covering tasks such as question answering, machine translation, and email writing. The evaluation aims to assess whether models can positively accept feedback in form of refuting instructions and whether they can consistently adhere to user demands throughout the conversation. We conduct evaluations on numerous LLMs and find that LLMs are stubborn, i.e. exhibit inclination to their internal knowledge, often failing to comply with user feedback. Additionally, as the length of the conversation increases, models gradually forget the user's stated feedback and roll back to their own responses. We further propose a recall-and-repeat prompts as a simple and effective way to enhance the model's responsiveness to feedback.
Abstract:Active learning aims to construct an effective training set by iteratively curating the most informative unlabeled data for annotation, which is practical in low-resource tasks. Most active learning techniques in classification rely on the model's uncertainty or disagreement to choose unlabeled data. However, previous work indicates that existing models are poor at quantifying predictive uncertainty, which can lead to over-confidence in superficial patterns and a lack of exploration. Inspired by the cognitive processes in which humans deduce and predict through causal information, we propose a novel Explainable Active Learning framework (XAL) for low-resource text classification, which aims to encourage classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations. Specifically, besides using a pre-trained bi-directional encoder for classification, we employ a pre-trained uni-directional decoder to generate and score the explanation. A ranking loss is proposed to enhance the decoder's capability in scoring explanations. During the selection of unlabeled data, we combine the predictive uncertainty of the encoder and the explanation score of the decoder to acquire informative data for annotation. As XAL is a general framework for text classification, we test our methods on six different classification tasks. Extensive experiments show that XAL achieves substantial improvement on all six tasks over previous AL methods. Ablation studies demonstrate the effectiveness of each component, and human evaluation shows that the model trained in XAL performs surprisingly well in explaining its prediction.
Abstract:Argument structure extraction (ASE) aims to identify the discourse structure of arguments within documents. Previous research has demonstrated that contextual information is crucial for developing an effective ASE model. However, we observe that merely concatenating sentences in a contextual window does not fully utilize contextual information and can sometimes lead to excessive attention on less informative sentences. To tackle this challenge, we propose an Efficient Context-aware ASE model (ECASE) that fully exploits contextual information by enhancing modeling capacity and augmenting training data. Specifically, we introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information. Additionally, we augment the training data by randomly masking discourse markers and sentences, which reduces the model's reliance on specific words or less informative sentences. Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance. Furthermore, ablation studies confirm the effectiveness of each module in our model.
Abstract:Catastrophic forgetting (CF) is a phenomenon that occurs in machine learning when a model forgets previously learned information as it learns new information. As large language models (LLMs) have shown excellent performance, it is interesting to uncover whether CF exists in the continual fine-tuning of LLMs. In this study, we empirically evaluate the forgetting phenomenon in LLMs' knowledge, from the perspectives of domain knowledge, reasoning, and reading comprehension. The experiments demonstrate that catastrophic forgetting is generally observed in LLMs ranging from 1b to 7b. Furthermore, as the scale increases, the severity of forgetting also intensifies. Comparing the decoder-only model BLOOMZ with the encoder-decoder model mT0, BLOOMZ suffers less forgetting and maintains more knowledge. We also observe that LLMs can mitigate language bias (e.g. gender bias) during continual fine-tuning. Moreover, we find that ALPACA can maintain more knowledge and capacity compared with LLAMA during the continual fine-tuning, which implies that general instruction tuning can help mitigate the forgetting phenomenon of LLMs in the further fine-tuning process.
Abstract:In recent years, there has been an explosion of research on the application of deep learning to the prediction of various peptide properties, due to the significant development and market potential of peptides. Molecular dynamics has enabled the efficient collection of large peptide datasets, providing reliable training data for deep learning. However, the lack of systematic analysis of the peptide encoding, which is essential for AI-assisted peptide-related tasks, makes it an urgent problem to be solved for the improvement of prediction accuracy. To address this issue, we first collect a high-quality, colossal simulation dataset of peptide self-assembly containing over 62,000 samples generated by coarse-grained molecular dynamics (CGMD). Then, we systematically investigate the effect of peptide encoding of amino acids into sequences and molecular graphs using state-of-the-art sequential (i.e., RNN, LSTM, and Transformer) and structural deep learning models (i.e., GCN, GAT, and GraphSAGE), on the accuracy of peptide self-assembly prediction, an essential physiochemical process prior to any peptide-related applications. Extensive benchmarking studies have proven Transformer to be the most powerful sequence-encoding-based deep learning model, pushing the limit of peptide self-assembly prediction to decapeptides. In summary, this work provides a comprehensive benchmark analysis of peptide encoding with advanced deep learning models, serving as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.