Large language models (LLMs) have revolutionized knowledge storage and retrieval, but face challenges with conflicting and outdated information. Knowledge editing techniques have been proposed to address these issues, yet they struggle with robustness tests involving long contexts, paraphrased subjects, and continuous edits. This work investigates the cause of these failures in locate-and-edit methods, offering theoretical insights into their key-value modeling and deriving mathematical bounds for robust and specific edits, leading to a novel 'group discussion' conceptual model for locate-and-edit methods. Empirical analysis reveals that keys used by current methods fail to meet robustness and specificity requirements. To address this, we propose a Robust Edit Pathway (REP) that disentangles editing keys from LLMs' inner representations. Evaluations on LLaMA2-7B and Mistral-7B using the CounterFact dataset show that REP significantly improves robustness across various metrics, both in-domain and out-of-domain, with minimal trade-offs in success rate and locality. Our findings advance the development of reliable and flexible knowledge updating in LLMs.