Abstract:We present a novel approach for 3D human pose estimation by employing probabilistic modeling. This approach leverages the advantages of normalizing flows in non-Euclidean geometries to address uncertain poses. Specifically, our method employs normalizing flow tailored to the SO(3) rotational group, incorporating a coupling mechanism based on the M\"obius transformation. This enables the framework to accurately represent any distribution on SO(3), effectively addressing issues related to discontinuities. Additionally, we reinterpret the challenge of reconstructing 3D human figures from 2D pixel-aligned inputs as the task of mapping these inputs to a range of probable poses. This perspective acknowledges the intrinsic ambiguity of the task and facilitates a straightforward integration method for multi-view scenarios. The combination of these strategies showcases the effectiveness of probabilistic models in complex scenarios for human pose estimation techniques. Our approach notably surpasses existing methods in the field of pose estimation. We also validate our methodology on human pose estimation from RGB images as well as medical X-Ray datasets.
Abstract:The 3D reconstruction of faces gains wide attention in computer vision and is used in many fields of application, for example, animation, virtual reality, and even forensics. This work is motivated by monitoring patients in sleep laboratories. Due to their unique characteristics, sensors from the radar domain have advantages compared to optical sensors, namely penetration of electrically non-conductive materials and independence of light. These advantages of radar signals unlock new applications and require adaptation of 3D reconstruction frameworks. We propose a novel model-based method for 3D reconstruction from radar images. We generate a dataset of synthetic radar images with a physics-based but non-differentiable radar renderer. This dataset is used to train a CNN-based encoder to estimate the parameters of a 3D morphable face model. Whilst the encoder alone already leads to strong reconstructions of synthetic data, we extend our reconstruction in an Analysis-by-Synthesis fashion to a model-based autoencoder. This is enabled by learning the rendering process in the decoder, which acts as an object-specific differentiable radar renderer. Subsequently, the combination of both network parts is trained to minimize both, the loss of the parameters and the loss of the resulting reconstructed radar image. This leads to the additional benefit, that at test time the parameters can be further optimized by finetuning the autoencoder unsupervised on the image loss. We evaluated our framework on generated synthetic face images as well as on real radar images with 3D ground truth of four individuals.
Abstract:Tomographic imaging reveals internal structures of 3D objects and is crucial for medical diagnoses. Visualizing the morphology and appearance of non-planar sparse anatomical structures that extend over multiple 2D slices in tomographic volumes is inherently difficult but valuable for decision-making and reporting. Hence, various organ-specific unfolding techniques exist to map their densely sampled 3D surfaces to a distortion-minimized 2D representation. However, there is no versatile framework to flatten complex sparse structures including vascular, duct or bone systems. We deploy a neural field to fit the transformation of the anatomy of interest to a 2D overview image. We further propose distortion regularization strategies and combine geometric with intensity-based loss formulations to also display non-annotated and auxiliary targets. In addition to improved versatility, our unfolding technique outperforms mesh-based baselines for sparse structures w.r.t. peak distortion and our regularization scheme yields smoother transformations compared to Jacobian formulations from neural field-based image registration.
Abstract:Scanning Electron Microscopes (SEMs) are widely renowned for their ability to analyze the surface structures of microscopic objects, offering the capability to capture highly detailed, yet only grayscale, images. To create more expressive and realistic illustrations, these images are typically manually colorized by an artist with the support of image editing software. This task becomes highly laborious when multiple images of a scanned object require colorization. We propose facilitating this process by using the underlying 3D structure of the microscopic scene to propagate the color information to all the captured images, from as little as one colorized view. We explore several scene representation techniques and achieve high-quality colorized novel view synthesis of a SEM scene. In contrast to prior work, there is no manual intervention or labelling involved in obtaining the 3D representation. This enables an artist to color a single or few views of a sequence and automatically retrieve a fully colored scene or video. Project page: https://ronly2460.github.io/ArCSEM
Abstract:Text-conditioned image-to-video generation (TI2V) aims to synthesize a realistic video starting from a given image (e.g., a woman's photo) and a text description (e.g., "a woman is drinking water."). Existing TI2V frameworks often require costly training on video-text datasets and specific model designs for text and image conditioning. In this paper, we propose TI2V-Zero, a zero-shot, tuning-free method that empowers a pretrained text-to-video (T2V) diffusion model to be conditioned on a provided image, enabling TI2V generation without any optimization, fine-tuning, or introducing external modules. Our approach leverages a pretrained T2V diffusion foundation model as the generative prior. To guide video generation with the additional image input, we propose a "repeat-and-slide" strategy that modulates the reverse denoising process, allowing the frozen diffusion model to synthesize a video frame-by-frame starting from the provided image. To ensure temporal continuity, we employ a DDPM inversion strategy to initialize Gaussian noise for each newly synthesized frame and a resampling technique to help preserve visual details. We conduct comprehensive experiments on both domain-specific and open-domain datasets, where TI2V-Zero consistently outperforms a recent open-domain TI2V model. Furthermore, we show that TI2V-Zero can seamlessly extend to other tasks such as video infilling and prediction when provided with more images. Its autoregressive design also supports long video generation.
Abstract:Single-view 3D reconstruction is currently approached from two dominant perspectives: reconstruction of scenes with limited diversity using 3D data supervision or reconstruction of diverse singular objects using large image priors. However, real-world scenarios are far more complex and exceed the capabilities of these methods. We therefore propose a hybrid method following a divide-and-conquer strategy. We first process the scene holistically, extracting depth and semantic information, and then leverage a single-shot object-level method for the detailed reconstruction of individual components. By following a compositional processing approach, the overall framework achieves full reconstruction of complex 3D scenes from a single image. We purposely design our pipeline to be highly modular by carefully integrating specific procedures for each processing step, without requiring an end-to-end training of the whole system. This enables the pipeline to naturally improve as future methods can replace the individual modules. We demonstrate the reconstruction performance of our approach on both synthetic and real-world scenes, comparing favorable against prior works. Project page: https://andreeadogaru.github.io/Gen3DSR.
Abstract:As we all know, writing scientific papers together with our beloved colleagues is a truly remarkable experience (partially): endless discussions about the same useless paragraph over and over again, followed by long days and long nights -- both at the same time. What a wonderful ride it is! What a beautiful life we have. But wait, there's one tiny little problem that utterly shatters the peace, turning even renowned scientists into bloodthirsty monsters: author order. The reason is that, contrary to widespread opinion, it's not the font size that matters, but the way things are ordered. Of course, this is a fairly well-known fact among scientists all across the planet (and beyond) and explains clearly why we regularly have to read about yet another escalated paper submission in local police reports. In this paper, we take an important step backwards to tackle this issue by solving the so-called author ordering problem (AOP) once and for all. Specifically, we propose AMOR, a system that replaces silly constructs like co-first or co-middle authorship with a simple yet easy probabilistic approach based on random shuffling of the author list at viewing time. In addition to AOP, we also solve the ambiguous author ordering citation problem} (AAOCP) on the fly. Stop author violence, be human.
Abstract:Neural Radiance Fields (NeRFs) quickly evolved as the new de-facto standard for the task of novel view synthesis when trained on a set of RGB images. In this paper, we conduct a comprehensive evaluation of neural scene representations, such as NeRFs, in the context of multi-modal learning. Specifically, we present four different strategies of how to incorporate a second modality, other than RGB, into NeRFs: (1) training from scratch independently on both modalities; (2) pre-training on RGB and fine-tuning on the second modality; (3) adding a second branch; and (4) adding a separate component to predict (color) values of the additional modality. We chose thermal imaging as second modality since it strongly differs from RGB in terms of radiosity, making it challenging to integrate into neural scene representations. For the evaluation of the proposed strategies, we captured a new publicly available multi-view dataset, ThermalMix, consisting of six common objects and about 360 RGB and thermal images in total. We employ cross-modality calibration prior to data capturing, leading to high-quality alignments between RGB and thermal images. Our findings reveal that adding a second branch to NeRF performs best for novel view synthesis on thermal images while also yielding compelling results on RGB. Finally, we also show that our analysis generalizes to other modalities, including near-infrared images and depth maps. Project page: https://mert-o.github.io/ThermalNeRF/.
Abstract:Statistical Shape Models of faces and various body parts are heavily used in medical image analysis, computer vision and visualization. Whilst the field is well explored with many existing tools, all of them aim at experts, which limits their applicability. We demonstrate the first tool that enables the convenient exploration of statistical shape models in the browser, with the capability to manipulate the faces in a targeted manner. This manipulation is performed via a posterior model given partial observations. We release our code and application on GitHub https://github.com/maximilian-hahn/exploreCOSMOS
Abstract:Guidance for assemblable parts is a promising field for augmented reality. Augmented reality assembly guidance requires 6D object poses of target objects in real time. Especially in time-critical medical or industrial settings, continuous and markerless tracking of individual parts is essential to visualize instructions superimposed on or next to the target object parts. In this regard, occlusions by the user's hand or other objects and the complexity of different assembly states complicate robust and real-time markerless multi-object tracking. To address this problem, we present Graph-based Object Tracking (GBOT), a novel graph-based single-view RGB-D tracking approach. The real-time markerless multi-object tracking is initialized via 6D pose estimation and updates the graph-based assembly poses. The tracking through various assembly states is achieved by our novel multi-state assembly graph. We update the multi-state assembly graph by utilizing the relative poses of the individual assembly parts. Linking the individual objects in this graph enables more robust object tracking during the assembly process. For evaluation, we introduce a synthetic dataset of publicly available and 3D printable assembly assets as a benchmark for future work. Quantitative experiments in synthetic data and further qualitative study in real test data show that GBOT can outperform existing work towards enabling context-aware augmented reality assembly guidance. Dataset and code will be made publically available.