Abstract:This overview article makes the case for how topological concepts can enrich research in machine learning. Using the Euler Characteristic Transform (ECT), a geometrical-topological invariant, as a running example, I present different use cases that result in more efficient models for analyzing point clouds, graphs, and meshes. Moreover, I outline a vision for how topological concepts could be used in the future, comprising (1) the learning of functions on topological spaces, (2) the building of hybrid models that imbue neural networks with knowledge about the topological information in data, and (3) the analysis of qualitative properties of neural networks. With current research already addressing some of these aspects, this article thus serves as an introduction and invitation to this nascent area of research.
Abstract:Deep neural networks often learn similar internal representations, both across different models and within their own layers. While inter-network similarities have enabled techniques such as model stitching and merging, intra-network similarities present new opportunities for designing more efficient architectures. In this paper, we investigate the emergence of these internal similarities across different layers in diverse neural architectures, showing that similarity patterns emerge independently of the datataset used. We introduce a simple metric, Block Redundancy, to detect redundant blocks, providing a foundation for future architectural optimization methods. Building on this, we propose Redundant Blocks Approximation (RBA), a general framework that identifies and approximates one or more redundant computational blocks using simpler transformations. We show that the transformation $\mathcal{T}$ between two representations can be efficiently computed in closed-form, and it is enough to replace the redundant blocks from the network. RBA reduces model parameters and time complexity while maintaining good performance. We validate our method on classification tasks in the vision domain using a variety of pretrained foundational models and datasets.
Abstract:The rising interest in leveraging higher-order interactions present in complex systems has led to a surge in more expressive models exploiting high-order structures in the data, especially in topological deep learning (TDL), which designs neural networks on high-order domains such as simplicial complexes. However, progress in this field is hindered by the scarcity of datasets for benchmarking these architectures. To address this gap, we introduce MANTRA, the first large-scale, diverse, and intrinsically high order dataset for benchmarking high-order models, comprising over 43,000 and 249,000 triangulations of surfaces and three-dimensional manifolds, respectively. With MANTRA, we assess several graph- and simplicial complex-based models on three topological classification tasks. We demonstrate that while simplicial complex-based neural networks generally outperform their graph-based counterparts in capturing simple topological invariants, they also struggle, suggesting a rethink of TDL. Thus, MANTRA serves as a benchmark for assessing and advancing topological methods, leading the way for more effective high-order models.
Abstract:The Euler Characteristic Transform (ECT) is an efficiently-computable geometrical-topological invariant that characterizes the global shape of data. In this paper, we introduce the Local Euler Characteristic Transform ($\ell$-ECT), a novel extension of the ECT particularly designed to enhance expressivity and interpretability in graph representation learning. Unlike traditional Graph Neural Networks (GNNs), which may lose critical local details through aggregation, the $\ell$-ECT provides a lossless representation of local neighborhoods. This approach addresses key limitations in GNNs by preserving nuanced local structures while maintaining global interpretability. Moreover, we construct a rotation-invariant metric based on $\ell$-ECTs for spatial alignment of data spaces. Our method exhibits superior performance than standard GNNs on a variety of node classification tasks, particularly in graphs with high heterophily.
Abstract:Graph neural networks have become the default choice by practitioners for graph learning tasks such as graph classification and node classification. Nevertheless, popular graph neural network models still struggle to capture higher-order information, i.e., information that goes \emph{beyond} pairwise interactions. Recent work has shown that persistent homology, a tool from topological data analysis, can enrich graph neural networks with topological information that they otherwise could not capture. Calculating such features is efficient for dimension 0 (connected components) and dimension 1 (cycles). However, when it comes to higher-order structures, it does not scale well, with a complexity of $O(n^d)$, where $n$ is the number of nodes and $d$ is the order of the structures. In this work, we introduce a novel method that extracts information about higher-order structures in the graph while still using the efficient low-dimensional persistent homology algorithm. On standard benchmark datasets, we show that our method can lead to up to $31\%$ improvements in test accuracy.
Abstract:Identifying (a) systemic barriers to quality healthcare access and (b) key indicators of care efficacy in the United States remains a significant challenge. To improve our understanding of regional disparities in care delivery, we introduce a novel application of curvature, a geometrical-topological property of networks, to Physician Referral Networks. Our initial findings reveal that Forman-Ricci and Ollivier-Ricci curvature measures, which are known for their expressive power in characterizing network structure, offer promising indicators for detecting variations in healthcare efficacy while capturing a range of significant regional demographic features. We also present APPARENT, an open-source tool that leverages Ricci curvature and other network features to examine correlations between regional Physician Referral Networks structure, local census data, healthcare effectiveness, and patient outcomes.
Abstract:Persistent homology is one of the most popular methods in Topological Data Analysis. An initial step in any analysis with persistent homology involves constructing a nested sequence of simplicial complexes, called a filtration, from a point cloud. There is an abundance of different complexes to choose from, with Rips, Alpha, and witness complexes being popular choices. In this manuscript, we build a different type of a geometrically-informed simplicial complex, called an ellipsoid complex. This complex is based on the idea that ellipsoids aligned with tangent directions better approximate the data compared to conventional (Euclidean) balls centered at sample points that are used in the construction of Rips and Alpha complexes, for instance. We use Principal Component Analysis to estimate tangent spaces directly from samples and present algorithms as well as an implementation for computing ellipsoid barcodes, i.e., topological descriptors based on ellipsoid complexes. Furthermore, we conduct extensive experiments and compare ellipsoid barcodes with standard Rips barcodes. Our findings indicate that ellipsoid complexes are particularly effective for estimating homology of manifolds and spaces with bottlenecks from samples. In particular, the persistence intervals corresponding to a ground-truth topological feature are longer compared to the intervals obtained when using the Rips complex of the data. Furthermore, ellipsoid barcodes lead to better classification results in sparsely-sampled point clouds. Finally, we demonstrate that ellipsoid barcodes outperform Rips barcodes in classification tasks.
Abstract:Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL may complement graph representation learning and geometric deep learning by incorporating topological concepts, and can thus provide a natural choice for various machine learning settings. To this end, this paper discusses open problems in TDL, ranging from practical benefits to theoretical foundations. For each problem, it outlines potential solutions and future research opportunities. At the same time, this paper serves as an invitation to the scientific community to actively participate in TDL research to unlock the potential of this emerging field.
Abstract:We introduce the manifold density function, which is an intrinsic method to validate manifold learning techniques. Our approach adapts and extends Ripley's $K$-function, and categorizes in an unsupervised setting the extent to which an output of a manifold learning algorithm captures the structure of a latent manifold. Our manifold density function generalizes to broad classes of Riemannian manifolds. In particular, we extend the manifold density function to general two-manifolds using the Gauss-Bonnet theorem, and demonstrate that the manifold density function for hypersurfaces is well approximated using the first Laplacian eigenvalue. We prove desirable convergence and robustness properties.
Abstract:Echoing recent calls to counter reliability and robustness concerns in machine learning via multiverse analysis, we present PRESTO, a principled framework for mapping the multiverse of machine-learning models that rely on latent representations. Although such models enjoy widespread adoption, the variability in their embeddings remains poorly understood, resulting in unnecessary complexity and untrustworthy representations. Our framework uses persistent homology to characterize the latent spaces arising from different combinations of diverse machine-learning methods, (hyper)parameter configurations, and datasets, allowing us to measure their pairwise (dis)similarity and statistically reason about their distributions. As we demonstrate both theoretically and empirically, our pipeline preserves desirable properties of collections of latent representations, and it can be leveraged to perform sensitivity analysis, detect anomalous embeddings, or efficiently and effectively navigate hyperparameter search spaces.