Abstract:Identifying (a) systemic barriers to quality healthcare access and (b) key indicators of care efficacy in the United States remains a significant challenge. To improve our understanding of regional disparities in care delivery, we introduce a novel application of curvature, a geometrical-topological property of networks, to Physician Referral Networks. Our initial findings reveal that Forman-Ricci and Ollivier-Ricci curvature measures, which are known for their expressive power in characterizing network structure, offer promising indicators for detecting variations in healthcare efficacy while capturing a range of significant regional demographic features. We also present APPARENT, an open-source tool that leverages Ricci curvature and other network features to examine correlations between regional Physician Referral Networks structure, local census data, healthcare effectiveness, and patient outcomes.
Abstract:Echoing recent calls to counter reliability and robustness concerns in machine learning via multiverse analysis, we present PRESTO, a principled framework for mapping the multiverse of machine-learning models that rely on latent representations. Although such models enjoy widespread adoption, the variability in their embeddings remains poorly understood, resulting in unnecessary complexity and untrustworthy representations. Our framework uses persistent homology to characterize the latent spaces arising from different combinations of diverse machine-learning methods, (hyper)parameter configurations, and datasets, allowing us to measure their pairwise (dis)similarity and statistically reason about their distributions. As we demonstrate both theoretically and empirically, our pipeline preserves desirable properties of collections of latent representations, and it can be leveraged to perform sensitivity analysis, detect anomalous embeddings, or efficiently and effectively navigate hyperparameter search spaces.
Abstract:Graph generative model evaluation necessitates understanding differences between graphs on the distributional level. This entails being able to harness salient attributes of graphs in an efficient manner. Curvature constitutes one such property of graphs, and has recently started to prove useful in characterising graphs. Its expressive properties, stability, and practical utility in model evaluation remain largely unexplored, however. We combine graph curvature descriptors with cutting-edge methods from topological data analysis to obtain robust, expressive descriptors for evaluating graph generative models.