Speaker recognition is the process of identifying and verifying individuals based on their voice characteristics.
The lack of impaired speech data hinders advancements in the development of inclusive speech technologies, particularly in low-resource languages such as Akan. To address this gap, this study presents a curated corpus of speech samples from native Akan speakers with speech impairment. The dataset comprises of 50.01 hours of audio recordings cutting across four classes of impaired speech namely stammering, cerebral palsy, cleft palate, and stroke induced speech disorder. Recordings were done in controlled supervised environments were participants described pre-selected images in their own words. The resulting dataset is a collection of audio recordings, transcriptions, and associated metadata on speaker demographics, class of impairment, recording environment and device. The dataset is intended to support research in low-resource automatic disordered speech recognition systems and assistive speech technology.
Automatic speech recognition (ASR) for conversational speech remains challenging due to the limited availability of large-scale, well-annotated multi-speaker dialogue data and the complex temporal dynamics of natural interactions. Speaker-aware simulated conversations (SASC) offer an effective data augmentation strategy by transforming single-speaker recordings into realistic multi-speaker dialogues. However, prior work has primarily focused on English data, leaving questions about the applicability to lower-resource languages. In this paper, we adapt and implement the SASC framework for Hungarian conversational ASR. We further propose C-SASC, an extended variant that incorporates pause modeling conditioned on utterance duration, enabling a more faithful representation of local temporal dependencies observed in human conversation while retaining the simplicity and efficiency of the original approach. We generate synthetic Hungarian dialogues from the BEA-Large corpus and combine them with real conversational data for ASR training. Both SASC and C-SASC are evaluated extensively under a wide range of simulation configurations, using conversational statistics derived from CallHome, BEA-Dialogue, and GRASS corpora. Experimental results show that speaker-aware conversational simulation consistently improves recognition performance over naive concatenation-based augmentation. While the additional duration conditioning in C-SASC yields modest but systematic gains--most notably in character-level error rates--its effectiveness depends on the match between source conversational statistics and the target domain. Overall, our findings confirm the robustness of speaker-aware conversational simulation for Hungarian ASR and highlight the benefits and limitations of increasingly detailed temporal modeling in synthetic dialogue generation.
We present DementiaBank-Emotion, the first multi-rater emotion annotation corpus for Alzheimer's disease (AD) speech. Annotating 1,492 utterances from 108 speakers for Ekman's six basic emotions and neutral, we find that AD patients express significantly more non-neutral emotions (16.9%) than healthy controls (5.7%; p < .001). Exploratory acoustic analysis suggests a possible dissociation: control speakers showed substantial F0 modulation for sadness (Delta = -3.45 semitones from baseline), whereas AD speakers showed minimal change (Delta = +0.11 semitones; interaction p = .023), though this finding is based on limited samples (sadness: n=5 control, n=15 AD) and requires replication. Within AD speech, loudness differentiates emotion categories, indicating partially preserved emotion-prosody mappings. We release the corpus, annotation guidelines, and calibration workshop materials to support research on emotion recognition in clinical populations.
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
Evasion attacks pose significant threats to AI systems, exploiting vulnerabilities in machine learning models to bypass detection mechanisms. The widespread use of voice data, including deepfakes, in promising future industries is currently hindered by insufficient legal frameworks. Adversarial attack methods have emerged as the most effective countermeasure against the indiscriminate use of such data. This research introduces masked energy perturbation (MEP), a novel approach using power spectrum for energy masking of original voice data. MEP applies masking to small energy regions in the frequency domain before generating adversarial perturbations, targeting areas less noticeable to the human auditory model. The study primarily employs advanced speaker recognition models, including ECAPA-TDNN and ResNet34, which have shown remarkable performance in speaker verification tasks. The proposed MEP method demonstrated strong performance in both audio quality and evasion effectiveness. The energy masking approach effectively minimizes the perceptual evaluation of speech quality (PESQ) degradation, indicating that minimal perceptual distortion occurs to the human listener despite the adversarial perturbations. Specifically, in the PESQ evaluation, the relative performance of the MEP method was 26.68% when compared to the fast gradient sign method (FGSM) and iterative FGSM.
We present CALM, a joint Contextual Acoustic-Linguistic Modeling framework for multi-speaker automatic speech recognition (ASR). In personalized AI scenarios, the joint availability of acoustic and linguistic cues naturally motivates the integration of target-speaker conditioning with contextual biasing in overlapping conversations. CALM implements this integration in an end-to-end framework through speaker embedding-driven target-speaker extraction and dynamic vocabulary-based contextual biasing. We evaluate CALM on simulated English (LibriSpeechMix) and Japanese (Corpus of Spontaneous Japanese mixtures, CSJMix). On two-speaker mixtures, CALM reduces biased word error rate (B-WER) from 12.7 to 4.7 on LibriSpeech2Mix and biased character error rate (B-CER) from 16.6 to 8.4 on CSJMix2 (eval3), demonstrating the effectiveness of joint acoustic-linguistic modeling across languages. We additionally report results on the AMI corpus (IHM-mix condition) to validate performance on standardized speech mixtures.
The performance of speaker verification systems degrades significantly under language mismatch, a critical challenge exacerbated by the field's reliance on English-centric data. To address this, we propose the TidyVoice Challenge for cross-lingual speaker verification. The challenge leverages the TidyVoiceX dataset from the novel TidyVoice benchmark, a large-scale, multilingual corpus derived from Mozilla Common Voice, and specifically curated to isolate the effect of language switching across approximately 40 languages. Participants will be tasked with building systems robust to this mismatch, with performance primarily evaluated using the Equal Error Rate on cross-language trials. By providing standardized data, open-source baselines, and a rigorous evaluation protocol, this challenge aims to drive research towards fairer, more inclusive, and language-independent speaker recognition technologies, directly aligning with the Interspeech 2026 theme, "Speaking Together."
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
Self-supervised learning (SSL) has transformed speech processing, yet its reliance on massive pre-training datasets remains a bottleneck. While robustness is often attributed to scale and diversity, the role of the data distribution is less understood. We systematically examine how curated subsets of pre-training data influence Automatic Speech Recognition (ASR) performance. Surprisingly, optimizing for acoustic, speaker, or linguistic diversity yields no clear improvements over random sampling. Instead, we find that prioritizing the longest utterances achieves superior ASR results while using only half the original dataset, reducing pre-training time by 24% on a large corpora. These findings suggest that for pre-training speech SSL models, data length is a more critical factor than either data diversity or overall data quantity for performance and efficiency, offering a new perspective for data selection strategies in SSL speech processing.
This report presents VibeVoice-ASR, a general-purpose speech understanding framework built upon VibeVoice, designed to address the persistent challenges of context fragmentation and multi-speaker complexity in long-form audio (e.g., meetings, podcasts) that remain despite recent advancements in short-form speech recognition. Unlike traditional pipelined approaches that rely on audio chunking, VibeVoice-ASRsupports single-pass processing for up to 60 minutes of audio. It unifies Automatic Speech Recognition, Speaker Diarization, and Timestamping into a single end-to-end generation task. In addition, VibeVoice-ASR supports over 50 languages, requires no explicit language setting, and natively handles code-switching within and across utterances. Furthermore, we introduce a prompt-based context injection mechanism that allows users to supply customized conetxt, significantly improving accuracy on domain-specific terminology and polyphonic character disambiguation.