Topic:Sign Language Translation
What is Sign Language Translation? Sign language translation is the process of converting sign language gestures into spoken or written language.
Papers and Code
Apr 16, 2025
Abstract:Current sign language machine translation systems rely on recognizing hand movements, facial expressions and body postures, and natural language processing, to convert signs into text. Recent approaches use Transformer architectures to model long-range dependencies via positional encoding. However, they lack accuracy in recognizing fine-grained, short-range temporal dependencies between gestures captured at high frame rates. Moreover, their high computational complexity leads to inefficient training. To mitigate these issues, we propose an Adaptive Transformer (ADAT), which incorporates components for enhanced feature extraction and adaptive feature weighting through a gating mechanism to emphasize contextually relevant features while reducing training overhead and maintaining translation accuracy. To evaluate ADAT, we introduce MedASL, the first public medical American Sign Language dataset. In sign-to-gloss-to-text experiments, ADAT outperforms the encoder-decoder transformer, improving BLEU-4 accuracy by 0.1% while reducing training time by 14.33% on PHOENIX14T and 3.24% on MedASL. In sign-to-text experiments, it improves accuracy by 8.7% and reduces training time by 2.8% on PHOENIX14T and achieves 4.7% higher accuracy and 7.17% faster training on MedASL. Compared to encoder-only and decoder-only baselines in sign-to-text, ADAT is at least 6.8% more accurate despite being up to 12.1% slower due to its dual-stream structure.
Via

Apr 14, 2025
Abstract:This work tackles the challenge of continuous sign language segmentation, a key task with huge implications for sign language translation and data annotation. We propose a transformer-based architecture that models the temporal dynamics of signing and frames segmentation as a sequence labeling problem using the Begin-In-Out (BIO) tagging scheme. Our method leverages the HaMeR hand features, and is complemented with 3D Angles. Extensive experiments show that our model achieves state-of-the-art results on the DGS Corpus, while our features surpass prior benchmarks on BSLCorpus.
* Accepted in the 19th IEEE International Conference on Automatic Face
and Gesture Recognition
Via

Apr 03, 2025
Abstract:Despite a large deaf and dumb population of 1.7 million, Bangla Sign Language (BdSL) remains a understudied domain. Specifically, there are no works on Bangla text-to-gloss translation task. To address this gap, we begin by addressing the dataset problem. We take inspiration from grammatical rule based gloss generation used in Germany and American sign langauage (ASL) and adapt it for BdSL. We also leverage LLM to generate synthetic data and use back-translation, text generation for data augmentation. With dataset prepared, we started experimentation. We fine-tuned pretrained mBART-50 and mBERT-multiclass-uncased model on our dataset. We also trained GRU, RNN and a novel seq-to-seq model with multi-head attention. We observe significant high performance (ScareBLEU=79.53) with fine-tuning pretrained mBART-50 multilingual model from Facebook. We then explored why we observe such high performance with mBART. We soon notice an interesting property of mBART -- it was trained on shuffled and masked text data. And as we know, gloss form has shuffling property. So we hypothesize that mBART is inherently good at text-to-gloss tasks. To find support against this hypothesis, we trained mBART-50 on PHOENIX-14T benchmark and evaluated it with existing literature. Our mBART-50 finetune demonstrated State-of-the-Art performance on PHOENIX-14T benchmark, far outperforming existing models in all 6 metrics (ScareBLEU = 63.89, BLEU-1 = 55.14, BLEU-2 = 38.07, BLEU-3 = 27.13, BLEU-4 = 20.68, COMET = 0.624). Based on the results, this study proposes a new paradigm for text-to-gloss task using mBART models. Additionally, our results show that BdSL text-to-gloss task can greatly benefit from rule-based synthetic dataset.
* Initial Version
Via

Mar 25, 2025
Abstract:The absence of effective communication the deaf population represents the main social gap in this community. Furthermore, the sign language, main deaf communication tool, is unlettered, i.e., there is no formal written representation. In consequence, main challenge today is the automatic translation among spatiotemporal sign representation and natural text language. Recent approaches are based on encoder-decoder architectures, where the most relevant strategies integrate attention modules to enhance non-linear correspondences, besides, many of these approximations require complex training and architectural schemes to achieve reasonable predictions, because of the absence of intermediate text projections. However, they are still limited by the redundant background information of the video sequences. This work introduces a multitask transformer architecture that includes a gloss learning representation to achieve a more suitable translation. The proposed approach also includes a dense motion representation that enhances gestures and includes kinematic information, a key component in sign language. From this representation it is possible to avoid background information and exploit the geometry of the signs, in addition, it includes spatiotemporal representations that facilitate the alignment between gestures and glosses as an intermediate textual representation. The proposed approach outperforms the state-of-the-art evaluated on the CoL-SLTD dataset, achieving a BLEU-4 of 72,64% in split 1, and a BLEU-4 of 14,64% in split 2. Additionally, the strategy was validated on the RWTH-PHOENIX-Weather 2014 T dataset, achieving a competitive BLEU-4 of 11,58%.
* 32 pages, 10 tables, 13 figures
Via

Mar 09, 2025
Abstract:Accurate sign language understanding serves as a crucial communication channel for individuals with disabilities. Current sign language translation algorithms predominantly rely on RGB frames, which may be limited by fixed frame rates, variable lighting conditions, and motion blur caused by rapid hand movements. Inspired by the recent successful application of event cameras in other fields, we propose to leverage event streams to assist RGB cameras in capturing gesture data, addressing the various challenges mentioned above. Specifically, we first collect a large-scale RGB-Event sign language translation dataset using the DVS346 camera, termed VECSL, which contains 15,676 RGB-Event samples, 15,191 glosses, and covers 2,568 Chinese characters. These samples were gathered across a diverse range of indoor and outdoor environments, capturing multiple viewing angles, varying light intensities, and different camera motions. Due to the absence of benchmark algorithms for comparison in this new task, we retrained and evaluated multiple state-of-the-art SLT algorithms, and believe that this benchmark can effectively support subsequent related research. Additionally, we propose a novel RGB-Event sign language translation framework (i.e., M$^2$-SLT) that incorporates fine-grained micro-sign and coarse-grained macro-sign retrieval, achieving state-of-the-art results on the proposed dataset. Both the source code and dataset will be released on https://github.com/Event-AHU/OpenESL.
* In Peer Review
Via

Mar 03, 2025
Abstract:Sign language machine translation (SLMT) -- the task of automatically translating between sign and spoken languages or between sign languages -- is a complex task within the field of NLP. Its multi-modal and non-linear nature require the joint efforts of sign language (SL) linguists, technical experts and SL users. Effective user involvement is a challenge that can be addressed through co-creation. Co-creation has been formally defined in many fields, e.g. business, marketing, educational and others, however in NLP and in particular in SLMT there is no formal, widely accepted definition. Starting from the inception and evolution of co-creation across various fields over time, we develop a relationship typology to address the collaboration between deaf, Hard of Hearing and hearing researchers and the co-creation with SL-users. We compare this new typology to the guiding principles of participatory design for NLP. We, then, assess 110 articles from the perspective of involvement of SL users and highlight the lack of involvement of the sign language community or users in decision-making processes required for effective co-creation. Finally, we derive formal guidelines for co-creation for SLMT which take the dynamic nature of co-creation throughout the life cycle of a research project into account.
* Submitted to the MDPI special issue "Human and Machine Translation:
Recent Trends and Foundations"
Via

Mar 05, 2025
Abstract:The objective of this work is to align asynchronous subtitles in sign language videos with limited labelled data. To achieve this goal, we propose a novel framework with the following contributions: (1) we leverage fundamental grammatical rules of British Sign Language (BSL) to pre-process the input subtitles, (2) we design a selective alignment loss to optimise the model for predicting the temporal location of signs only when the queried sign actually occurs in a scene, and (3) we conduct self-training with refined pseudo-labels which are more accurate than the heuristic audio-aligned labels. From this, our model not only better understands the correlation between the text and the signs, but also holds potential for application in the translation of sign languages, particularly in scenarios where manual labelling of large-scale sign data is impractical or challenging. Extensive experimental results demonstrate that our approach achieves state-of-the-art results, surpassing previous baselines by substantial margins in terms of both frame-level accuracy and F1-score. This highlights the effectiveness and practicality of our framework in advancing the field of sign language video alignment and translation.
Via

Mar 04, 2025
Abstract:Sign Languages are the primary form of communication for Deaf communities across the world. To break the communication barriers between the Deaf and Hard-of-Hearing and the hearing communities, it is imperative to build systems capable of translating the spoken language into sign language and vice versa. Building on insights from previous research, we propose a deep learning model for Sign Language Production (SLP), which to our knowledge is the first attempt on Greek SLP. We tackle this task by utilizing a transformer-based architecture that enables the translation from text input to human pose keypoints, and the opposite. We evaluate the effectiveness of the proposed pipeline on the Greek SL dataset Elementary23, through a series of comparative analyses and ablation studies. Our pipeline's components, which include data-driven gloss generation, training through video to text translation and a scheduling algorithm for teacher forcing - auto-regressive decoding seem to actively enhance the quality of produced SL videos.
Via

Feb 17, 2025
Abstract:Machine Translation has played a critical role in reducing language barriers, but its adaptation for Sign Language Machine Translation (SLMT) has been less explored. Existing works on SLMT mostly use the Transformer neural network which exhibits low performance due to the dynamic nature of the sign language. In this paper, we propose a novel Gated-Logarithmic Transformer (GLoT) that captures the long-term temporal dependencies of the sign language as a time-series data. We perform a comprehensive evaluation of GloT with the transformer and transformer-fusion models as a baseline, for Sign-to-Gloss-to-Text translation. Our results demonstrate that GLoT consistently outperforms the other models across all metrics. These findings underscore its potential to address the communication challenges faced by the Deaf and Hard of Hearing community.
Via

Mar 11, 2025
Abstract:Sign language representation learning presents unique challenges due to the complex spatio-temporal nature of signs and the scarcity of labeled datasets. Existing methods often rely either on models pre-trained on general visual tasks, that lack sign-specific features, or use complex multimodal and multi-branch architectures. To bridge this gap, we introduce a scalable, self-supervised framework for sign representation learning. We leverage important inductive (sign) priors during the training of our RGB model. To do this, we leverage simple but important cues based on skeletons while pretraining a masked autoencoder. These sign specific priors alongside feature regularization and an adversarial style agnostic loss provide a powerful backbone. Notably, our model does not require skeletal keypoints during inference, avoiding the limitations of keypoint-based models during downstream tasks. When finetuned, we achieve state-of-the-art performance for sign recognition on the WLASL, ASL-Citizen and NMFs-CSL datasets, using a simpler architecture and with only a single-modality. Beyond recognition, our frozen model excels in sign dictionary retrieval and sign translation, surpassing standard MAE pretraining and skeletal-based representations in retrieval. It also reduces computational costs for training existing sign translation models while maintaining strong performance on Phoenix2014T, CSL-Daily and How2Sign.
Via
