Topic:Sign Language Translation
What is Sign Language Translation? Sign language translation is the process of converting sign language gestures into spoken or written language.
Papers and Code
Nov 26, 2024
Abstract:Sign language translation (SLT) is challenging, as it involves converting sign language videos into natural language. Previous studies have prioritized accuracy over diversity. However, diversity is crucial for handling lexical and syntactic ambiguities in machine translation, suggesting it could similarly benefit SLT. In this work, we propose DiffSLT, a novel gloss-free SLT framework that leverages a diffusion model, enabling diverse translations while preserving sign language semantics. DiffSLT transforms random noise into the target latent representation, conditioned on the visual features of input video. To enhance visual conditioning, we design Guidance Fusion Module, which fully utilizes the multi-level spatiotemporal information of the visual features. We also introduce DiffSLT-P, a DiffSLT variant that conditions on pseudo-glosses and visual features, providing key textual guidance and reducing the modality gap. As a result, DiffSLT and DiffSLT-P significantly improve diversity over previous gloss-free SLT methods and achieve state-of-the-art performance on two SLT datasets, thereby markedly improving translation quality.
Via
Nov 25, 2024
Abstract:Sign language translation (SLT) is a challenging task that involves translating sign language images into spoken language. For SLT models to perform this task successfully, they must bridge the modality gap and identify subtle variations in sign language components to understand their meanings accurately. To address these challenges, we propose a novel gloss-free SLT framework called Multimodal Sign Language Translation (MMSLT), which leverages the representational capabilities of off-the-shelf multimodal large language models (MLLMs). Specifically, we generate detailed textual descriptions of sign language components using MLLMs. Then, through our proposed multimodal-language pre-training module, we integrate these description features with sign video features to align them within the spoken sentence space. Our approach achieves state-of-the-art performance on benchmark datasets PHOENIX14T and CSL-Daily, highlighting the potential of MLLMs to be effectively utilized in SLT.
Via
Nov 25, 2024
Abstract:Sign language processing has traditionally relied on task-specific models,limiting the potential for transfer learning across tasks. We introduce SHuBERT (Sign Hidden-Unit BERT), a self-supervised transformer encoder that learns strong representations from approximately 1,000 hours of American Sign Language (ASL) video content. Inspired by the success of the HuBERT speech representation model, SHuBERT adapts masked prediction for multi-stream visual sign language input, learning to predict multiple targets for corresponding to clustered hand, face, and body pose streams. SHuBERT achieves state-of-the-art performance across multiple benchmarks. On sign language translation, it outperforms prior methods trained on publicly available data on the How2Sign (+0.7 BLEU), OpenASL (+10.0 BLEU), and FLEURS-ASL (+0.3 BLEU) benchmarks. Similarly for isolated sign language recognition, SHuBERT's accuracy surpasses that of specialized models on ASL-Citizen (+5\%) and SEM-LEX (+20.6\%), while coming close to them on WLASL2000 (-3\%). Ablation studies confirm the contribution of each component of the approach.
* 17 pages
Via
Nov 19, 2024
Abstract:We have come up with a research that hopes to provide a bridge between the users of American Sign Language and the users of spoken language and Indian Sign Language (ISL). The research enabled us to create a novel framework that we have developed for Learner Systems. Leveraging art of Large models to create key features including: - Real-time translation between these two sign languages in an efficient manner. Making LLM's capability available for seamless translations to ISL. Here is the full study showing its implementation in this paper. The core of the system is a sophisticated pipeline that begins with reclassification and recognition of ASL gestures based on a strong Random Forest Classifier. By recognizing the ASL, it is translated into text which can be more easily processed. Highly evolved natural language NLP (Natural Language Processing) techniques come in handy as they play a role in our LLM integration where you then use LLMs to be able to convert the ASL text to ISL which provides you with the intent of sentence or phrase. The final step is to synthesize the translated text back into ISL gestures, creating an end-to-end translation experience using RIFE-Net. This framework is tasked with key challenges such as automatically dealing with gesture variability and overcoming the linguistic differences between ASL and ISL. By automating the translation process, we hope to vastly improve accessibility for sign language users. No longer will the communication gap between ASL and ISL create barriers; this totally cool innovation aims to bring our communities closer together. And we believe, with full confidence in our framework, that we're able to apply the same principles across a wide variety of sign language dialects.
Via
Nov 19, 2024
Abstract:Sign language processing technology development relies on extensive and reliable datasets, instructions, and ethical guidelines. We present a comprehensive Azerbaijani Sign Language Dataset (AzSLD) collected from diverse sign language users and linguistic parameters to facilitate advancements in sign recognition and translation systems and support the local sign language community. The dataset was created within the framework of a vision-based AzSL translation project. This study introduces the dataset as a summary of the fingerspelling alphabet and sentence- and word-level sign language datasets. The dataset was collected from signers of different ages, genders, and signing styles, with videos recorded from two camera angles to capture each sign in full detail. This approach ensures robust training and evaluation of gesture recognition models. AzSLD contains 30,000 videos, each carefully annotated with accurate sign labels and corresponding linguistic translations. The dataset is accompanied by technical documentation and source code to facilitate its use in training and testing. This dataset offers a valuable resource of labeled data for researchers and developers working on sign language recognition, translation, or synthesis. Ethical guidelines were strictly followed throughout the project, with all participants providing informed consent for collecting, publishing, and using the data.
Via
Nov 19, 2024
Abstract:Sign language translation, especially in gloss-free paradigm, is confronting a dilemma of impracticality and unsustainability due to growing resource-intensive methodologies. Contemporary state-of-the-arts (SOTAs) have significantly hinged on pretrained sophiscated backbones such as Large Language Models (LLMs), embedding sources, or extensive datasets, inducing considerable parametric and computational inefficiency for sustainable use in real-world scenario. Despite their success, following this research direction undermines the overarching mission of this domain to create substantial value to bridge hard-hearing and common populations. Committing to the prevailing trend of LLM and Natural Language Processing (NLP) studies, we pursue a profound essential change in architecture to achieve ground-up improvements without external aid from pretrained models, prior knowledge transfer, or any NLP strategies considered not-from-scratch. Introducing Signformer, a from-scratch Feather-Giant transforming the area towards Edge AI that redefines extremities of performance and efficiency with LLM-competence and edgy-deployable compactness. In this paper, we present nature analysis of sign languages to inform our algorithmic design and deliver a scalable transformer pipeline with convolution and attention novelty. We achieve new 2nd place on leaderboard with a parametric reduction of 467-1807x against the finests as of 2024 and outcompete almost every other methods in a lighter configuration of 0.57 million parameters.
Via
Nov 18, 2024
Abstract:The primary concern of this research is to take American Sign Language (ASL) data through real time camera footage and be able to convert the data and information into text. Adding to that, we are also putting focus on creating a framework that can also convert text into sign language in real time which can help us break the language barrier for the people who are in need. In this work, for recognising American Sign Language (ASL), we have used the You Only Look Once(YOLO) model and Convolutional Neural Network (CNN) model. YOLO model is run in real time and automatically extracts discriminative spatial-temporal characteristics from the raw video stream without the need for any prior knowledge, eliminating design flaws. The CNN model here is also run in real time for sign language detection. We have introduced a novel method for converting text based input to sign language by making a framework that will take a sentence as input, identify keywords from that sentence and then show a video where sign language is performed with respect to the sentence given as input in real time. To the best of our knowledge, this is a rare study to demonstrate bidirectional sign language communication in real time in the American Sign Language (ASL).
Via
Nov 07, 2024
Abstract:Sign languages are the language of hearing-impaired people who use visuals like the hand, facial, and body movements for communication. There are different signs and gestures representing alphabets, words, and phrases. Nowadays approximately 300 sign languages are being practiced worldwide such as American Sign Language (ASL), Chinese Sign Language (CSL), Indian Sign Language (ISL), and many more. Sign languages are dependent on the vocal language of a place. Unlike vocal or spoken languages, there are no helping words in sign language like is, am, are, was, were, will, be, etc. As only a limited population is well-versed in sign language, this lack of familiarity of sign language hinders hearing-impaired people from communicating freely and easily with everyone. This issue can be addressed by a sign language recognition (SLR) system which has the capability to translate the sign language into vocal language. In this paper, a continuous SLR system is proposed using a deep learning model employing Long Short-Term Memory (LSTM), trained and tested on an ISL primary dataset. This dataset is created using MediaPipe Holistic pipeline for tracking face, hand, and body movements and collecting landmarks. The system recognizes the signs and gestures in real-time with 88.23% accuracy.
* Wireless Personal Communication, 2024
* 14 pages, 4 figures, Wireless Pers Commun
Via
Nov 06, 2024
Abstract:Language models for American Sign Language (ASL) could make language technologies substantially more accessible to those who sign. To train models on tasks such as isolated sign recognition (ISR) and ASL-to-English translation, datasets provide annotated video examples of ASL signs. To facilitate the generalizability and explainability of these models, we introduce the American Sign Language Knowledge Graph (ASLKG), compiled from twelve sources of expert linguistic knowledge. We use the ASLKG to train neuro-symbolic models for 3 ASL understanding tasks, achieving accuracies of 91% on ISR, 14% for predicting the semantic features of unseen signs, and 36% for classifying the topic of Youtube-ASL videos.
Via
Oct 25, 2024
Abstract:Like spoken languages, a single sign language expression could correspond to multiple valid textual interpretations. Hence, learning a rigid one-to-one mapping for sign language translation (SLT) models might be inadequate, particularly in the case of limited data. In this work, we introduce a Diverse Sign Language Translation (DivSLT) task, aiming to generate diverse yet accurate translations for sign language videos. Firstly, we employ large language models (LLM) to generate multiple references for the widely-used CSL-Daily and PHOENIX14T SLT datasets. Here, native speakers are only invited to touch up inaccurate references, thus significantly improving the annotation efficiency. Secondly, we provide a benchmark model to spur research in this task. Specifically, we investigate multi-reference training strategies to enable our DivSLT model to achieve diverse translations. Then, to enhance translation accuracy, we employ the max-reward-driven reinforcement learning objective that maximizes the reward of the translated result. Additionally, we utilize multiple metrics to assess the accuracy, diversity, and semantic precision of the DivSLT task. Experimental results on the enriched datasets demonstrate that our DivSLT method achieves not only better translation performance but also diverse translation results.
Via