Topic:Retinal Vessel Segmentation
What is Retinal Vessel Segmentation? Retinal vessel segmentation is the process of identifying and segmenting blood vessels in retinal images for medical diagnosis.
Papers and Code
Apr 21, 2025
Abstract:We propose a novel retinal vessel segmentation network, the Weighted Multi-Kernel Attention Network (WMKA-Net), which aims to address the issues of insufficient multiscale feature capture, loss of contextual information, and noise sensitivity in retinal vessel segmentation. WMKA-Net significantly improves the segmentation performance of small vessels and low-contrast regions by integrating several innovative components, including the MultiKernelFeature Fusion Module (MKDC), the Progressive Feature Weighting Fusion Strategy (UDFF), and the Attention Mechanism Module (AttentionBlock). The MKDC module employs multiscale parallel convolutional kernels to extract vessel characteristics, thereby enhancing the ability to capture complex vascular structures. The UDFF strategy optimizes the transmission of feature information by weighted fusion of high- and low-level features. The AttentionBlock highlights key regions and suppresses noise interference through the attention mechanism. Experimental results demonstrate that WMKA-Net achieves excellent segmentation performance in multiple public datasets, particularly in segmentation of small vessels and processing of pathological regions. This work provides a robust and efficient new method for segmentation of the retinal vessel.
Via

Apr 18, 2025
Abstract:Accurate retinal vessel segmentation provides essential structural information for ophthalmic image analysis. However, existing methods struggle with challenges such as multi-scale vessel variability, complex curvatures, and ambiguous boundaries. While Convolutional Neural Networks (CNNs), Transformer-based models and Mamba-based architectures have advanced the field, they often suffer from vascular discontinuities or edge feature ambiguity. To address these limitations, we propose a novel hybrid framework that synergistically integrates CNNs and Mamba for high-precision retinal vessel segmentation. Our approach introduces three key innovations: 1) The proposed High-Resolution Edge Fuse Network is a high-resolution preserving hybrid segmentation framework that combines a multi-scale backbone with the Multi-scale Retina Edge Fusion (MREF) module to enhance edge features, ensuring accurate and robust vessel segmentation. 2) The Dynamic Snake Visual State Space block combines Dynamic Snake Convolution with Mamba to adaptively capture vessel curvature details and long-range dependencies. An improved eight-directional 2D Snake-Selective Scan mechanism and a dynamic weighting strategy enhance the perception of complex vascular topologies. 3) The MREF module enhances boundary precision through multi-scale edge feature aggregation, suppressing noise while emphasizing critical vessel structures across scales. Experiments on three public datasets demonstrate that our method achieves state-of-the-art performance, particularly in maintaining vascular continuity and effectively segmenting vessels in low-contrast regions. This work provides a robust method for clinical applications requiring accurate retinal vessel analysis. The code is available at https://github.com/frank-oy/HREFNet.
Via

Mar 08, 2025
Abstract:Retinal vessel segmentation is critical for diagnosing ocular conditions, yet current deep learning methods are limited by modality-specific challenges and significant distribution shifts across imaging devices, resolutions, and anatomical regions. In this paper, we propose GrInAdapt, a novel framework for source-free multi-target domain adaptation that leverages multi-view images to refine segmentation labels and enhance model generalizability for optical coherence tomography angiography (OCTA) of the fundus of the eye. GrInAdapt follows an intuitive three-step approach: (i) grounding images to a common anchor space via registration, (ii) integrating predictions from multiple views to achieve improved label consensus, and (iii) adapting the source model to diverse target domains. Furthermore, GrInAdapt is flexible enough to incorporate auxiliary modalities such as color fundus photography, to provide complementary cues for robust vessel segmentation. Extensive experiments on a multi-device, multi-site, and multi-modal retinal dataset demonstrate that GrInAdapt significantly outperforms existing domain adaptation methods, achieving higher segmentation accuracy and robustness across multiple domains. These results highlight the potential of GrInAdapt to advance automated retinal vessel analysis and support robust clinical decision-making.
Via

Mar 03, 2025
Abstract:Generalization in medical segmentation models is challenging due to limited annotated datasets and imaging variability. To address this, we propose Retinal Layout-Aware Diffusion (RLAD), a novel diffusion-based framework for generating controllable layout-aware images. RLAD conditions image generation on multiple key layout components extracted from real images, ensuring high structural fidelity while enabling diversity in other components. Applied to retinal fundus imaging, we augmented the training datasets by synthesizing paired retinal images and vessel segmentations conditioned on extracted blood vessels from real images, while varying other layout components such as lesions and the optic disc. Experiments demonstrated that RLAD-generated data improved generalization in retinal vessel segmentation by up to 8.1%. Furthermore, we present REYIA, a comprehensive dataset comprising 586 manually segmented retinal images. To foster reproducibility and drive innovation, both our code and dataset will be made publicly accessible.
Via

Mar 09, 2025
Abstract:Structural changes in main retinal blood vessels serve as critical biomarkers for the onset and progression of glaucoma. Identifying these vessels is vital for vascular modeling yet highly challenging. This paper proposes X-GAN, a generative AI-powered unsupervised segmentation model designed for extracting main blood vessels from Optical Coherence Tomography Angiography (OCTA) images. The process begins with the Space Colonization Algorithm (SCA) to rapidly generate a skeleton of vessels, featuring their radii. By synergistically integrating generative adversarial networks (GANs) with biostatistical modeling of vessel radii, X-GAN enables a fast reconstruction of both 2D and 3D representations of the vessels. Based on this reconstruction, X-GAN achieves nearly 100\% segmentation accuracy without relying on labeled data or high-performance computing resources. Also, to address the Issue, data scarity, we introduce GSS-RetVein, a high-definition mixed 2D and 3D glaucoma retinal dataset. GSS-RetVein provides a rigorous benchmark due to its exceptionally clear capillary structures, introducing controlled noise for testing model robustness. Its 2D images feature sharp capillary boundaries, while its 3D component enhances vascular reconstruction and blood flow prediction, supporting glaucoma progression simulations. Experimental results confirm GSS-RetVein's superiority in evaluating main vessel segmentation compared to existing datasets. Code and dataset are here: https://github.com/VikiXie/SatMar8.
* 11 pages, 8 figures
Via

Feb 23, 2025
Abstract:Interpretability is crucial to enhance trust in machine learning models for medical diagnostics. However, most state-of-the-art image classifiers based on neural networks are not interpretable. As a result, clinicians often resort to known biomarkers for diagnosis, although biomarker-based classification typically performs worse than large neural networks. This work proposes a method that surpasses the performance of established machine learning models while simultaneously improving prediction interpretability for diabetic retinopathy staging from optical coherence tomography angiography (OCTA) images. Our method is based on a novel biology-informed heterogeneous graph representation that models retinal vessel segments, intercapillary areas, and the foveal avascular zone (FAZ) in a human-interpretable way. This graph representation allows us to frame diabetic retinopathy staging as a graph-level classification task, which we solve using an efficient graph neural network. We benchmark our method against well-established baselines, including classical biomarker-based classifiers, convolutional neural networks (CNNs), and vision transformers. Our model outperforms all baselines on two datasets. Crucially, we use our biology-informed graph to provide explanations of unprecedented detail. Our approach surpasses existing methods in precisely localizing and identifying critical vessels or intercapillary areas. In addition, we give informative and human-interpretable attributions to critical characteristics. Our work contributes to the development of clinical decision-support tools in ophthalmology.
Via

Mar 06, 2025
Abstract:The chorioallantoic membrane (CAM) model is widely employed in angiogenesis research, and distribution of growing blood vessels is the key evaluation indicator. As a result, vessel segmentation is crucial for quantitative assessment based on topology and morphology. However, manual segmentation is extremely time-consuming, labor-intensive, and prone to inconsistency due to its subjective nature. Moreover, research on CAM vessel segmentation algorithms remains limited, and the lack of public datasets contributes to poor prediction performance. To address these challenges, we propose an innovative Intermediate Domain-guided Adaptation (IDA) method, which utilizes the similarity between CAM images and retinal images, along with existing public retinal datasets, to perform unsupervised training on CAM images. Specifically, we introduce a Multi-Resolution Asymmetric Translation (MRAT) strategy to generate intermediate images to promote image-level interaction. Then, an Intermediate Domain-guided Contrastive Learning (IDCL) module is developed to disentangle cross-domain feature representations. This method overcomes the limitations of existing unsupervised domain adaptation (UDA) approaches, which primarily concentrate on directly source-target alignment while neglecting intermediate domain information. Notably, we create the first CAM dataset to validate the proposed algorithm. Extensive experiments on this dataset show that our method outperforms compared approaches. Moreover, it achieves superior performance in UDA tasks across retinal datasets, highlighting its strong generalization capability. The CAM dataset and source codes are available at https://github.com/Light-47/IDA.
Via

Feb 25, 2025
Abstract:The vascular structure in retinal images plays a crucial role in ophthalmic diagnostics, and its accuracies are directly influenced by the quality of the retinal image. Contrast enhancement is one of the crucial steps in any segmentation algorithm - the more so since the retinal images are related to medical diagnosis. Contrast enhancement is a vital step that not only intensifies the darkness of the blood vessels but also prevents minor capillaries from being disregarded during the process. This paper proposes a novel model that utilizes the linear blending of Fuzzy Contrast Enhancement (FCE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance the retinal image for retinal vascular structure segmentation. The scheme is tested using the Digital Retinal Images for Vessel Extraction (DRIVE) dataset. The assertion was then evaluated through performance comparison among other methodologies which are Gray-scaling, Histogram Equalization (HE), FCE, and CLAHE. It was evident in this paper that the combination of FCE and CLAHE methods showed major improvement. Both FCE and CLAHE methods dominating with 88% as better enhancement methods proved that preprocessing through fuzzy logic is effective.
* 2023 24th International Arab Conference on Information Technology
(ACIT), Ajman, United Arab Emirates, 2023, pp. 1-6
* This UPDATED version of the paper, accepted at the 2023 24th
International Arab Conference on Information Technology (ACIT), includes
corrections for typographical and grammatical errors, an joint authorship
section with a detailed CRediT author statement, improvements in graphics and
figure references, and refinements in citations
Via

Feb 10, 2025
Abstract:We identify two major limitations in the existing studies on retinal vessel segmentation: (1) Most existing works are restricted to one modality, i.e, the Color Fundus (CF). However, multi-modality retinal images are used every day in the study of retina and retinal diseases, and the study of vessel segmentation on the other modalities is scarce; (2) Even though a small amount of works extended their experiments to limited new modalities such as the Multi-Color Scanning Laser Ophthalmoscopy (MC), these works still require finetuning a separate model for the new modality. And the finetuning will require extra training data, which is difficult to acquire. In this work, we present a foundational universal vessel segmentation model (UVSM) for multi-modality retinal images. Not only do we perform the study on a much wider range of modalities, but also we propose a universal model to segment the vessels in all these commonly-used modalities. Despite being much more versatile comparing with existing methods, our universal model still demonstrates comparable performance with the state-of-the- art finetuned methods. To the best of our knowledge, this is the first work that achieves cross-modality retinal vessel segmentation and also the first work to study retinal vessel segmentation in some novel modalities.
Via

Jan 31, 2025
Abstract:The U-Net architecture and its variants have remained state-of-the-art (SOTA) for retinal vessel segmentation over the past decade. In this study, we introduce a Full Scale Guided Network (FSG-Net), where the feature representation network with modernized convolution blocks extracts full-scale information and the guided convolution block refines that information. Attention-guided filter is introduced to the guided convolution block under the interpretation that the filter behaves like the unsharp mask filter. Passing full-scale information to the attention block allows for the generation of improved attention maps, which are then passed to the attention-guided filter, resulting in performance enhancement of the segmentation network. The structure preceding the guided convolution block can be replaced by any U-Net variant, which enhances the scalability of the proposed approach. For a fair comparison, we re-implemented recent studies available in public repositories to evaluate their scalability and reproducibility. Our experiments also show that the proposed network demonstrates competitive results compared to current SOTA models on various public datasets. Ablation studies demonstrate that the proposed model is competitive with much smaller parameter sizes. Lastly, by applying the proposed model to facial wrinkle segmentation, we confirmed the potential for scalability to similar tasks in other domains. Our code is available on https://github.com/ZombaSY/FSG-Net-pytorch.
* 10 pages, 7 figures
Via
