Abstract:Time-evolving graphs, such as social and citation networks, often contain noise that distorts structural and temporal patterns, adversely affecting downstream tasks, such as node classification. Existing purification methods focus on static graphs, limiting their ability to account for critical temporal dependencies in dynamic graphs. In this work, we propose TiGer (Time-evolving Graph purifier), a self-supervised method explicitly designed for time-evolving graphs. TiGer assigns two different sub-scores to edges using (1) self-attention for capturing long-term contextual patterns shaped by both adjacent and distant past events of varying significance and (2) statistical distance measures for detecting inconsistency over a short-term period. These sub-scores are used to identify and filter out suspicious (i.e., noise-like) edges through an ensemble strategy, ensuring robustness without requiring noise labels. Our experiments on five real-world datasets show TiGer filters out noise with up to 10.2% higher accuracy and improves node classification performance by up to 5.3%, compared to state-of-the-art methods.
Abstract:The U-Net architecture and its variants have remained state-of-the-art (SOTA) for retinal vessel segmentation over the past decade. In this study, we introduce a Full Scale Guided Network (FSG-Net), where the feature representation network with modernized convolution blocks extracts full-scale information and the guided convolution block refines that information. Attention-guided filter is introduced to the guided convolution block under the interpretation that the filter behaves like the unsharp mask filter. Passing full-scale information to the attention block allows for the generation of improved attention maps, which are then passed to the attention-guided filter, resulting in performance enhancement of the segmentation network. The structure preceding the guided convolution block can be replaced by any U-Net variant, which enhances the scalability of the proposed approach. For a fair comparison, we re-implemented recent studies available in public repositories to evaluate their scalability and reproducibility. Our experiments also show that the proposed network demonstrates competitive results compared to current SOTA models on various public datasets. Ablation studies demonstrate that the proposed model is competitive with much smaller parameter sizes. Lastly, by applying the proposed model to facial wrinkle segmentation, we confirmed the potential for scalability to similar tasks in other domains. Our code is available on https://github.com/ZombaSY/FSG-Net-pytorch.
Abstract:Learners of a second language (L2) often unconsciously substitute unfamiliar L2 phonemes with similar phonemes from their native language (L1), even though native speakers of the L2 perceive these sounds as distinct and non-interchangeable. This phonemic substitution leads to deviations from the standard phonological patterns of the L2, creating challenges for learners in acquiring accurate L2 pronunciation. To address this, we propose Inter-linguistic Phonetic Composition (IPC), a novel computational method designed to minimize incorrect phonological transfer by reconstructing L2 phonemes as composite sounds derived from multiple L1 phonemes. Tests with two automatic speech recognition models demonstrated that when L2 speakers produced IPC-generated composite sounds, the recognition rate of target L2 phonemes improved by 20% compared to when their pronunciation was influenced by original phonological transfer patterns. The improvement was observed within a relatively shorter time frame, demonstrating rapid acquisition of the composite sound.
Abstract:To detect anomalies in real-world graphs, such as social, email, and financial networks, various approaches have been developed. While they typically assume static input graphs, most real-world graphs grow over time, naturally represented as edge streams. In this context, we aim to achieve three goals: (a) instantly detecting anomalies as they occur, (b) adapting to dynamically changing states, and (c) handling the scarcity of dynamic anomaly labels. In this paper, we propose SLADE (Self-supervised Learning for Anomaly Detection in Edge Streams) for rapid detection of dynamic anomalies in edge streams, without relying on labels. SLADE detects the shifts of nodes into abnormal states by observing deviations in their interaction patterns over time. To this end, it trains a deep neural network to perform two self-supervised tasks: (a) minimizing drift in node representations and (b) generating long-term interaction patterns from short-term ones. Failure in these tasks for a node signals its deviation from the norm. Notably, the neural network and tasks are carefully designed so that all required operations can be performed in constant time (w.r.t. the graph size) in response to each new edge in the input stream. In dynamic anomaly detection across four real-world datasets, SLADE outperforms nine competing methods, even those leveraging label supervision.
Abstract:Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this work, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.