Abstract:Learners of a second language (L2) often unconsciously substitute unfamiliar L2 phonemes with similar phonemes from their native language (L1), even though native speakers of the L2 perceive these sounds as distinct and non-interchangeable. This phonemic substitution leads to deviations from the standard phonological patterns of the L2, creating challenges for learners in acquiring accurate L2 pronunciation. To address this, we propose Inter-linguistic Phonetic Composition (IPC), a novel computational method designed to minimize incorrect phonological transfer by reconstructing L2 phonemes as composite sounds derived from multiple L1 phonemes. Tests with two automatic speech recognition models demonstrated that when L2 speakers produced IPC-generated composite sounds, the recognition rate of target L2 phonemes improved by 20% compared to when their pronunciation was influenced by original phonological transfer patterns. The improvement was observed within a relatively shorter time frame, demonstrating rapid acquisition of the composite sound.
Abstract:To detect anomalies in real-world graphs, such as social, email, and financial networks, various approaches have been developed. While they typically assume static input graphs, most real-world graphs grow over time, naturally represented as edge streams. In this context, we aim to achieve three goals: (a) instantly detecting anomalies as they occur, (b) adapting to dynamically changing states, and (c) handling the scarcity of dynamic anomaly labels. In this paper, we propose SLADE (Self-supervised Learning for Anomaly Detection in Edge Streams) for rapid detection of dynamic anomalies in edge streams, without relying on labels. SLADE detects the shifts of nodes into abnormal states by observing deviations in their interaction patterns over time. To this end, it trains a deep neural network to perform two self-supervised tasks: (a) minimizing drift in node representations and (b) generating long-term interaction patterns from short-term ones. Failure in these tasks for a node signals its deviation from the norm. Notably, the neural network and tasks are carefully designed so that all required operations can be performed in constant time (w.r.t. the graph size) in response to each new edge in the input stream. In dynamic anomaly detection across four real-world datasets, SLADE outperforms nine competing methods, even those leveraging label supervision.
Abstract:Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this work, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.