Abstract:Learners of a second language (L2) often unconsciously substitute unfamiliar L2 phonemes with similar phonemes from their native language (L1), even though native speakers of the L2 perceive these sounds as distinct and non-interchangeable. This phonemic substitution leads to deviations from the standard phonological patterns of the L2, creating challenges for learners in acquiring accurate L2 pronunciation. To address this, we propose Inter-linguistic Phonetic Composition (IPC), a novel computational method designed to minimize incorrect phonological transfer by reconstructing L2 phonemes as composite sounds derived from multiple L1 phonemes. Tests with two automatic speech recognition models demonstrated that when L2 speakers produced IPC-generated composite sounds, the recognition rate of target L2 phonemes improved by 20% compared to when their pronunciation was influenced by original phonological transfer patterns. The improvement was observed within a relatively shorter time frame, demonstrating rapid acquisition of the composite sound.
Abstract:In recent years, the integration of large language models (LLMs) has revolutionized the field of robotics, enabling robots to communicate, understand, and reason with human-like proficiency. This paper explores the multifaceted impact of LLMs on robotics, addressing key challenges and opportunities for leveraging these models across various domains. By categorizing and analyzing LLM applications within core robotics elements -- communication, perception, planning, and control -- we aim to provide actionable insights for researchers seeking to integrate LLMs into their robotic systems. Our investigation focuses on LLMs developed post-GPT-3.5, primarily in text-based modalities while also considering multimodal approaches for perception and control. We offer comprehensive guidelines and examples for prompt engineering, facilitating beginners' access to LLM-based robotics solutions. Through tutorial-level examples and structured prompt construction, we illustrate how LLM-guided enhancements can be seamlessly integrated into robotics applications. This survey serves as a roadmap for researchers navigating the evolving landscape of LLM-driven robotics, offering a comprehensive overview and practical guidance for harnessing the power of language models in robotics development.