Abstract:In this study, the performance of existing U-shaped neural network architectures was enhanced for medical image segmentation by adding Transformer. Although Transformer architectures are powerful at extracting global information, its ability to capture local information is limited due to its high complexity. To address this challenge, we proposed a new lightweight U-shaped cascade fusion network (LUCF-Net) for medical image segmentation. It utilized an asymmetrical structural design and incorporated both local and global modules to enhance its capacity for local and global modeling. Additionally, a multi-layer cascade fusion decoding network was designed to further bolster the network's information fusion capabilities. Validation results achieved on multi-organ datasets in CT format, cardiac segmentation datasets in MRI format, and dermatology datasets in image format demonstrated that the proposed model outperformed other state-of-the-art methods in handling local-global information, achieving an improvement of 1.54% in Dice coefficient and 2.6 mm in Hausdorff distance on multi-organ segmentation. Furthermore, as a network that combines Convolutional Neural Network and Transformer architectures, it achieves competitive segmentation performance with only 6.93 million parameters and 6.6 gigabytes of floating point operations, without the need of pre-training. In summary, the proposed method demonstrated enhanced performance while retaining a simpler model design compared to other Transformer-based segmentation networks.
Abstract:The problem of traffic congestion not only causes a large amount of economic losses, but also seriously endangers the urban environment. Predicting traffic congestion has important practical significance. So far, most studies have been based on historical data from sensors placed on different roads to predict future traffic flow and speed, to analyze the traffic congestion conditions of a certain road segment. However, due to the fixed position of sensors, it is difficult to mine new information. On the other hand, vehicle trajectory data is more flexible and can extract traffic information as needed. Therefore, we proposed a new traffic congestion prediction model - Multi Adjacency relationship Attention Graph Convolutional Networks(MA2GCN). This model transformed vehicle trajectory data into graph structured data in grid form, and proposed a vehicle entry and exit matrix based on the mobility between different grids. At the same time, in order to improve the performance of the model, this paper also built a new adaptive adjacency matrix generation method and adjacency matrix attention module. This model mainly used gated temporal convolution and graph convolution to extract temporal and spatial information, respectively. Compared with multiple baselines, our model achieved the best performance on Shanghai taxi GPS trajectory dataset. The code is available at https://github.com/zachysun/Taxi_Traffic_Benchmark.