Abstract:Previous works of negation understanding mainly focus on negation cue detection and scope resolution, without identifying negation subject which is also significant to the downstream tasks. In this paper, we propose a new negation triplet extraction (NTE) task which aims to extract negation subject along with negation cue and scope. To achieve NTE, we devise a novel Syntax&Semantic-Enhanced Negation Extraction model, namely SSENE, which is built based on a generative pretrained language model (PLM) {of Encoder-Decoder architecture} with a multi-task learning framework. Specifically, the given sentence's syntactic dependency tree is incorporated into the PLM's encoder to discover the correlations between the negation subject, cue and scope. Moreover, the semantic consistency between the sentence and the extracted triplet is ensured by an auxiliary task learning. Furthermore, we have constructed a high-quality Chinese dataset NegComment based on the users' reviews from the real-world platform of Meituan, upon which our evaluations show that SSENE achieves the best NTE performance compared to the baselines. Our ablation and case studies also demonstrate that incorporating the syntactic information helps the PLM's recognize the distant dependency between the subject and cue, and the auxiliary task learning is helpful to extract the negation triplets with more semantic consistency.
Abstract:Open information extraction (OpenIE) aims to extract the schema-free triplets in the form of (\emph{subject}, \emph{predicate}, \emph{object}) from a given sentence. Compared with general information extraction (IE), OpenIE poses more challenges for the IE models, {especially when multiple complicated triplets exist in a sentence. To extract these complicated triplets more effectively, in this paper we propose a novel generative OpenIE model, namely \emph{DualOIE}, which achieves a dual task at the same time as extracting some triplets from the sentence, i.e., converting the triplets into the sentence.} Such dual task encourages the model to correctly recognize the structure of the given sentence and thus is helpful to extract all potential triplets from the sentence. Specifically, DualOIE extracts the triplets in two steps: 1) first extracting a sequence of all potential predicates, 2) then using the predicate sequence as a prompt to induce the generation of triplets. Our experiments on two benchmarks and our dataset constructed from Meituan demonstrate that DualOIE achieves the best performance among the state-of-the-art baselines. Furthermore, the online A/B test on Meituan platform shows that 0.93\% improvement of QV-CTR and 0.56\% improvement of UV-CTR have been obtained when the triplets extracted by DualOIE were leveraged in Meituan's search system.
Abstract:Product reviews often contain a large number of implicit aspects and object-attribute co-existence cases. Unfortunately, many existing studies in Aspect-Based Sentiment Analysis (ABSA) have overlooked this issue, which can make it difficult to extract opinions comprehensively and fairly. In this paper, we propose a new task called Entity-Aspect-Opinion-Sentiment Quadruple Extraction (EASQE), which aims to hierarchically decompose aspect terms into entities and aspects to avoid information loss, non-exclusive annotations, and opinion misunderstandings in ABSA tasks. To facilitate research in this new task, we have constructed four datasets (Res14-EASQE, Res15-EASQE, Res16-EASQE, and Lap14-EASQE) based on the SemEval Restaurant and Laptop datasets. We have also proposed a novel two-stage sequence-tagging based Trigger-Opinion framework as the baseline for the EASQE task. Empirical evaluations show that our Trigger-Opinion framework can generate satisfactory EASQE results and can also be applied to other ABSA tasks, significantly outperforming state-of-the-art methods. We have made the four datasets and source code of Trigger-Opinion publicly available to facilitate further research in this area.
Abstract:Taxonomy expansion task is essential in organizing the ever-increasing volume of new concepts into existing taxonomies. Most existing methods focus exclusively on using textual semantics, leading to an inability to generalize to unseen terms and the "Prototypical Hypernym Problem." In this paper, we propose Visual Taxonomy Expansion (VTE), introducing visual features into the taxonomy expansion task. We propose a textual hypernymy learning task and a visual prototype learning task to cluster textual and visual semantics. In addition to the tasks on respective modalities, we introduce a hyper-proto constraint that integrates textual and visual semantics to produce fine-grained visual semantics. Our method is evaluated on two datasets, where we obtain compelling results. Specifically, on the Chinese taxonomy dataset, our method significantly improves accuracy by 8.75 %. Additionally, our approach performs better than ChatGPT on the Chinese taxonomy dataset.