Abstract:Current Pose-Guided Person Image Synthesis (PGPIS) methods depend heavily on large amounts of labeled triplet data to train the generator in a supervised manner. However, they often falter when applied to in-the-wild samples, primarily due to the distribution gap between the training datasets and real-world test samples. While some researchers aim to enhance model generalizability through sophisticated training procedures, advanced architectures, or by creating more diverse datasets, we adopt the test-time fine-tuning paradigm to customize a pre-trained Text2Image (T2I) model. However, naively applying test-time tuning results in inconsistencies in facial identities and appearance attributes. To address this, we introduce a Visual Consistency Module (VCM), which enhances appearance consistency by combining the face, text, and image embedding. Our approach, named OnePoseTrans, requires only a single source image to generate high-quality pose transfer results, offering greater stability than state-of-the-art data-driven methods. For each test case, OnePoseTrans customizes a model in around 48 seconds with an NVIDIA V100 GPU.
Abstract:Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse and high-quality Barbie-like garments and accessories. Instead of relying on a holistic model, Barbie achieves fine-grained disentanglement on avatars by semantic-aligned separated models for human body and outfits. These disentangled 3D representations are then optimized by different expert models to guarantee the domain-specific fidelity. To balance geometry diversity and reasonableness, we propose a series of losses for template-preserving and human-prior evolving. The final avatar is enhanced by unified texture refinement for superior texture consistency. Extensive experiments demonstrate that Barbie outperforms existing methods in both dressed human and outfit generation, supporting flexible apparel combination and animation. The code will be released for research purposes. Our project page is: https://2017211801.github.io/barbie.github.io/.
Abstract:Recent advancements in image inpainting, particularly through diffusion modeling, have yielded promising outcomes. However, when tested in scenarios involving the completion of images based on the foreground objects, current methods that aim to inpaint an image in an end-to-end manner encounter challenges such as "over-imagination", inconsistency between foreground and background, and limited diversity. In response, we introduce Anywhere, a pioneering multi-agent framework designed to address these issues. Anywhere utilizes a sophisticated pipeline framework comprising various agents such as Visual Language Model (VLM), Large Language Model (LLM), and image generation models. This framework consists of three principal components: the prompt generation module, the image generation module, and the outcome analyzer. The prompt generation module conducts a semantic analysis of the input foreground image, leveraging VLM to predict relevant language descriptions and LLM to recommend optimal language prompts. In the image generation module, we employ a text-guided canny-to-image generation model to create a template image based on the edge map of the foreground image and language prompts, and an image refiner to produce the outcome by blending the input foreground and the template image. The outcome analyzer employs VLM to evaluate image content rationality, aesthetic score, and foreground-background relevance, triggering prompt and image regeneration as needed. Extensive experiments demonstrate that our Anywhere framework excels in foreground-conditioned image inpainting, mitigating "over-imagination", resolving foreground-background discrepancies, and enhancing diversity. It successfully elevates foreground-conditioned image inpainting to produce more reliable and diverse results.
Abstract:Personalized text-to-image (T2I) models not only produce lifelike and varied visuals but also allow users to tailor the images to fit their personal taste. These personalization techniques can grasp the essence of a concept through a collection of images, or adjust a pre-trained text-to-image model with a specific image input for subject-driven or attribute-aware guidance. Yet, accurately capturing the distinct visual attributes of an individual image poses a challenge for these methods. To address this issue, we introduce OSTAF, a novel parameter-efficient one-shot fine-tuning method which only utilizes one reference image for T2I personalization. A novel hypernetwork-powered attribute-focused fine-tuning mechanism is employed to achieve the precise learning of various attribute features (e.g., appearance, shape or drawing style) from the reference image. Comparing to existing image customization methods, our method shows significant superiority in attribute identification and application, as well as achieves a good balance between efficiency and output quality.
Abstract:With the development of neural radiance fields and generative models, numerous methods have been proposed for learning 3D human generation from 2D images. These methods allow control over the pose of the generated 3D human and enable rendering from different viewpoints. However, none of these methods explore semantic disentanglement in human image synthesis, i.e., they can not disentangle the generation of different semantic parts, such as the body, tops, and bottoms. Furthermore, existing methods are limited to synthesize images at $512^2$ resolution due to the high computational cost of neural radiance fields. To address these limitations, we introduce SemanticHuman-HD, the first method to achieve semantic disentangled human image synthesis. Notably, SemanticHuman-HD is also the first method to achieve 3D-aware image synthesis at $1024^2$ resolution, benefiting from our proposed 3D-aware super-resolution module. By leveraging the depth maps and semantic masks as guidance for the 3D-aware super-resolution, we significantly reduce the number of sampling points during volume rendering, thereby reducing the computational cost. Our comparative experiments demonstrate the superiority of our method. The effectiveness of each proposed component is also verified through ablation studies. Moreover, our method opens up exciting possibilities for various applications, including 3D garment generation, semantic-aware image synthesis, controllable image synthesis, and out-of-domain image synthesis.
Abstract:The StyleGAN family succeed in high-fidelity image generation and allow for flexible and plausible editing of generated images by manipulating the semantic-rich latent style space.However, projecting a real image into its latent space encounters an inherent trade-off between inversion quality and editability. Existing encoder-based or optimization-based StyleGAN inversion methods attempt to mitigate the trade-off but see limited performance. To fundamentally resolve this problem, we propose a novel two-phase framework by designating two separate networks to tackle editing and reconstruction respectively, instead of balancing the two. Specifically, in Phase I, a W-space-oriented StyleGAN inversion network is trained and used to perform image inversion and editing, which assures the editability but sacrifices reconstruction quality. In Phase II, a carefully designed rectifying network is utilized to rectify the inversion errors and perform ideal reconstruction. Experimental results show that our approach yields near-perfect reconstructions without sacrificing the editability, thus allowing accurate manipulation of real images. Further, we evaluate the performance of our rectifying network, and see great generalizability towards unseen manipulation types and out-of-domain images.
Abstract:Generating a new font library is a very labor-intensive and time-consuming job for glyph-rich scripts. Few-shot font generation is thus required, as it requires only a few glyph references without fine-tuning during test. Existing methods follow the style-content disentanglement paradigm and expect novel fonts to be produced by combining the style codes of the reference glyphs and the content representations of the source. However, these few-shot font generation methods either fail to capture content-independent style representations, or employ localized component-wise style representations, which is insufficient to model many Chinese font styles that involve hyper-component features such as inter-component spacing and "connected-stroke". To resolve these drawbacks and make the style representations more reliable, we propose a self-supervised cross-modality pre-training strategy and a cross-modality transformer-based encoder that is conditioned jointly on the glyph image and the corresponding stroke labels. The cross-modality encoder is pre-trained in a self-supervised manner to allow effective capture of cross- and intra-modality correlations, which facilitates the content-style disentanglement and modeling style representations of all scales (stroke-level, component-level and character-level). The pre-trained encoder is then applied to the downstream font generation task without fine-tuning. Experimental comparisons of our method with state-of-the-art methods demonstrate our method successfully transfers styles of all scales. In addition, it only requires one reference glyph and achieves the lowest rate of bad cases in the few-shot font generation task 28% lower than the second best
Abstract:This paper presents a novel Region-Aware Face Swapping (RAFSwap) network to achieve identity-consistent harmonious high-resolution face generation in a local-global manner: \textbf{1)} Local Facial Region-Aware (FRA) branch augments local identity-relevant features by introducing the Transformer to effectively model misaligned cross-scale semantic interaction. \textbf{2)} Global Source Feature-Adaptive (SFA) branch further complements global identity-relevant cues for generating identity-consistent swapped faces. Besides, we propose a \textit{Face Mask Predictor} (FMP) module incorporated with StyleGAN2 to predict identity-relevant soft facial masks in an unsupervised manner that is more practical for generating harmonious high-resolution faces. Abundant experiments qualitatively and quantitatively demonstrate the superiority of our method for generating more identity-consistent high-resolution swapped faces over SOTA methods, \eg, obtaining 96.70 ID retrieval that outperforms SOTA MegaFS by 5.87$\uparrow$.
Abstract:Training a text-to-image generator in the general domain (e.g., Dall.e, CogView) requires huge amounts of paired text-image data, which is too expensive to collect. In this paper, we propose a self-supervised scheme named as CLIP-GEN for general text-to-image generation with the language-image priors extracted with a pre-trained CLIP model. In our approach, we only require a set of unlabeled images in the general domain to train a text-to-image generator. Specifically, given an image without text labels, we first extract the embedding of the image in the united language-vision embedding space with the image encoder of CLIP. Next, we convert the image into a sequence of discrete tokens in the VQGAN codebook space (the VQGAN model can be trained with the unlabeled image dataset in hand). Finally, we train an autoregressive transformer that maps the image tokens from its unified language-vision representation. Once trained, the transformer can generate coherent image tokens based on the text embedding extracted from the text encoder of CLIP upon an input text. Such a strategy enables us to train a strong and general text-to-image generator with large text-free image dataset such as ImageNet. Qualitative and quantitative evaluations verify that our method significantly outperforms optimization-based text-to-image methods in terms of image quality while not compromising the text-image matching. Our method can even achieve comparable performance as flagship supervised models like CogView.
Abstract:Recent learning-based inpainting algorithms have achieved compelling results for completing missing regions after removing undesired objects in videos. To maintain the temporal consistency among the frames, 3D spatial and temporal operations are often heavily used in the deep networks. However, these methods usually suffer from memory constraints and can only handle low resolution videos. We propose STRA-Net, a novel spatial-temporal residual aggregation framework for high resolution video inpainting. The key idea is to first learn and apply a spatial and temporal inpainting network on the downsampled low resolution videos. Then, we refine the low resolution results by aggregating the learned spatial and temporal image residuals (details) to the upsampled inpainted frames. Both the quantitative and qualitative evaluations show that we can produce more temporal-coherent and visually appealing results than the state-of-the-art methods on inpainting high resolution videos.