Abstract:High-level synthesis (HLS) is a widely used tool in designing Field Programmable Gate Array (FPGA). HLS enables FPGA design with software programming languages by compiling the source code into an FPGA circuit. The source code includes a program (called ``kernel'') and several pragmas that instruct hardware synthesis, such as parallelization, pipeline, etc. While it is relatively easy for software developers to design the program, it heavily relies on hardware knowledge to design the pragmas, posing a big challenge for software developers. Recently, different machine learning algorithms, such as GNNs, have been proposed to automate the pragma design via performance prediction. However, when applying the trained model on new kernels, the significant domain shift often leads to unsatisfactory performance. We propose a more domain-generalizable model structure: a two-level hierarchical Mixture of Experts (MoE), that can be flexibly adapted to any GNN model. Different expert networks can learn to deal with different regions in the representation space, and they can utilize similar patterns between the old kernels and new kernels. In the low-level MoE, we apply MoE on three natural granularities of a program: node, basic block, and graph. The high-level MoE learns to aggregate the three granularities for the final decision. To stably train the hierarchical MoE, we further propose a two-stage training method. Extensive experiments verify the effectiveness of the hierarchical MoE.
Abstract:In recent years, domain-specific accelerators (DSAs) have gained popularity for applications such as deep learning and autonomous driving. To facilitate DSA designs, programmers use high-level synthesis (HLS) to compile a high-level description written in C/C++ into a design with low-level hardware description languages that eventually synthesize DSAs on circuits. However, creating a high-quality HLS design still demands significant domain knowledge, particularly in microarchitecture decisions expressed as \textit{pragmas}. Thus, it is desirable to automate such decisions with the help of machine learning for predicting the quality of HLS designs, requiring a deeper understanding of the program that consists of original code and pragmas. Naturally, these programs can be considered as sequence data. In addition, these programs can be compiled and converted into a control data flow graph (CDFG). But existing works either fail to leverage both modalities or combine the two in shallow or coarse ways. We propose ProgSG, a model that allows interaction between the source code sequence modality and the graph modality in a deep and fine-grained way. To alleviate the scarcity of labeled designs, a pre-training method is proposed based on a suite of compiler's data flow analysis tasks. Experimental results show that ProgSG reduces the RMSE of design performance predictions by up to $22\%$, and identifies designs with an average of $1.10\times$ and $1.26\times$ (up to $8.17\times$ and $13.31\times$) performance improvement in design space exploration (DSE) task compared to HARP and AutoDSE, respectively.
Abstract:The ongoing trend of hardware specialization has led to a growing use of custom data formats when processing sparse workloads, which are typically memory-bound. These formats facilitate optimized software/hardware implementations by utilizing sparsity pattern- or target-aware data structures and layouts to enhance memory access latency and bandwidth utilization. However, existing sparse tensor programming models and compilers offer little or no support for productively customizing the sparse formats. Additionally, because these frameworks represent formats using a limited set of per-dimension attributes, they lack the flexibility to accommodate numerous new variations of custom sparse data structures and layouts. To overcome this deficiency, we propose UniSparse, an intermediate language that provides a unified abstraction for representing and customizing sparse formats. Unlike the existing attribute-based frameworks, UniSparse decouples the logical representation of the sparse tensor (i.e., the data structure) from its low-level memory layout, enabling the customization of both. As a result, a rich set of format customizations can be succinctly expressed in a small set of well-defined query, mutation, and layout primitives. We also develop a compiler leveraging the MLIR infrastructure, which supports adaptive customization of formats, and automatic code generation of format conversion and compute operations for heterogeneous architectures. We demonstrate the efficacy of our approach through experiments running commonly-used sparse linear algebra operations with specialized formats on multiple different hardware targets, including an Intel CPU, an NVIDIA GPU, an AMD Xilinx FPGA, and a simulated processing-in-memory (PIM) device.
Abstract:Complex data analysis inherently seeks unexpected insights through exploratory \re{visual analysis} methods, transcending logical, step-by-step processing. However, \re{existing interfaces such as notebooks and dashboards have limitations in exploration and comparison for visual data analysis}. Addressing these limitations, we introduce a "design-like" intelligent canvas environment integrating generative AI into data analysis, offering rapid prototyping, iteration, and comparative visualization management. Our dual contributions include the integration of generative AI components into a canvas interface, and empirical findings from a user study (N=10) evaluating the effectiveness of the canvas interface.
Abstract:To explore how humans can best leverage LLMs for writing and how interacting with these models affects feelings of ownership and trust in the writing process, we compared common human-AI interaction types (e.g., guiding system, selecting from system outputs, post-editing outputs) in the context of LLM-assisted news headline generation. While LLMs alone can generate satisfactory news headlines, on average, human control is needed to fix undesirable model outputs. Of the interaction methods, guiding and selecting model output added the most benefit with the lowest cost (in time and effort). Further, AI assistance did not harm participants' perception of control compared to freeform editing.
Abstract:This study explores the integration of generative artificial intelligence (AI), specifically large language models, with multi-modal analogical reasoning as an innovative approach to enhance science, technology, engineering, and mathematics (STEM) education. We have developed a novel system that utilizes the capacities of generative AI to transform intricate principles in mathematics, physics, and programming into comprehensible metaphors. To further augment the educational experience, these metaphors are subsequently converted into visual form. Our study aims to enhance the learners' understanding of STEM concepts and their learning engagement by using the visual metaphors. We examine the efficacy of our system via a randomized A/B/C test, assessing learning gains and motivation shifts among the learners. Our study demonstrates the potential of applying large language models to educational practice on STEM subjects. The results will shed light on the design of educational system in terms of harnessing AI's potential to empower educational stakeholders.
Abstract:This study investigates the use of Artificial Intelligence (AI)-powered, multi-role chatbots as a means to enhance learning experiences and foster engagement in computer science education. Leveraging a design-based research approach, we develop, implement, and evaluate a novel learning environment enriched with four distinct chatbot roles: Instructor Bot, Peer Bot, Career Advising Bot, and Emotional Supporter Bot. These roles, designed around the tenets of Self-Determination Theory, cater to the three innate psychological needs of learners - competence, autonomy, and relatedness. Additionally, the system embraces an inquiry-based learning paradigm, encouraging students to ask questions, seek solutions, and explore their curiosities. We test this system in a higher education context over a period of one month with 200 participating students, comparing outcomes with conditions involving a human tutor and a single chatbot. Our research utilizes a mixed-methods approach, encompassing quantitative measures such as chat log sequence analysis, and qualitative methods including surveys and focus group interviews. By integrating cutting-edge Natural Language Processing techniques such as topic modelling and sentiment analysis, we offer an in-depth understanding of the system's impact on learner engagement, motivation, and inquiry-based learning. This study, through its rigorous design and innovative approach, provides significant insights into the potential of AI-empowered, multi-role chatbots in reshaping the landscape of computer science education and fostering an engaging, supportive, and motivating learning environment.
Abstract:Large Language Models (LLMs) have demonstrated impressive text generation capabilities, prompting us to reconsider the future of human-AI co-creation and how humans interact with LLMs. In this paper, we present a spectrum of content generation tasks and their corresponding human-AI interaction patterns. These tasks include: 1) fixed-scope content curation tasks with minimal human-AI interactions, 2) independent creative tasks with precise human-AI interactions, and 3) complex and interdependent creative tasks with iterative human-AI interactions. We encourage the generative AI and HCI research communities to focus on the more complex and interdependent tasks, which require greater levels of human involvement.
Abstract:Cross-domain analogical reasoning is a core creative ability that can be challenging for humans. Recent work has shown some proofs-of concept of Large language Models' (LLMs) ability to generate cross-domain analogies. However, the reliability and potential usefulness of this capacity for augmenting human creative work has received little systematic exploration. In this paper, we systematically explore LLMs capacity to augment cross-domain analogical reasoning. Across three studies, we found: 1) LLM-generated cross-domain analogies were frequently judged as helpful in the context of a problem reformulation task (median 4 out of 5 helpfulness rating), and frequently (~80% of cases) led to observable changes in problem formulations, and 2) there was an upper bound of 25% of outputs bring rated as potentially harmful, with a majority due to potentially upsetting content, rather than biased or toxic content. These results demonstrate the potential utility -- and risks -- of LLMs for augmenting cross-domain analogical creativity.
Abstract:Conversational agents (CAs) have the great potential in mitigating the clinicians' burden in screening for neurocognitive disorders among older adults. It is important, therefore, to develop CAs that can be engaging, to elicit conversational speech input from older adult participants for supporting assessment of cognitive abilities. As an initial step, this paper presents research in developing the backchanneling ability in CAs in the form of a verbal response to engage the speaker. We analyzed 246 conversations of cognitive assessments between older adults and human assessors, and derived the categories of reactive backchannels (e.g. "hmm") and proactive backchannels (e.g. "please keep going"). This is used in the development of TalkTive, a CA which can predict both timing and form of backchanneling during cognitive assessments. The study then invited 36 older adult participants to evaluate the backchanneling feature. Results show that proactive backchanneling is more appreciated by participants than reactive backchanneling.