Abstract:The integration of a complex set of Electronic Design Automation (EDA) tools to enhance interoperability is a critical concern for circuit designers. Recent advancements in large language models (LLMs) have showcased their exceptional capabilities in natural language processing and comprehension, offering a novel approach to interfacing with EDA tools. This research paper introduces ChatEDA, an autonomous agent for EDA empowered by a large language model, AutoMage, complemented by EDA tools serving as executors. ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task planning, script generation, and task execution. Through comprehensive experimental evaluations, ChatEDA has demonstrated its proficiency in handling diverse requirements, and our fine-tuned AutoMage model has exhibited superior performance compared to GPT-4 and other similar LLMs.
Abstract:In this paper, two approximate 3*3 multipliers are proposed and the synthesis results of the ASAP-7nm process library justify that they can reduce the area by 31.38% and 36.17%, and the power consumption by 36.73% and 35.66% compared with the exact multiplier, respectively. They can be aggregated with a 2*2 multiplier to produce an 8*8 multiplier with low error rate based on the distribution of DNN weights. We propose a hardware-driven software co-optimization method to improve the DNN accuracy by retraining. Based on the proposed two approximate 3-bit multipliers, three approximate 8-bit multipliers with low error-rate are designed for DNNs. Compared with the exact 8-bit unsigned multiplier, our design can achieve a significant advantage over other approximate multipliers on the public dataset.
Abstract:We propose an optimization method for the automatic design of approximate multipliers, which minimizes the average error according to the operand distributions. Our multiplier achieves up to 50.24% higher accuracy than the best reproduced approximate multiplier in DNNs, with 15.76% smaller area, 25.05% less power consumption, and 3.50% shorter delay. Compared with an exact multiplier, our multiplier reduces the area, power consumption, and delay by 44.94%, 47.63%, and 16.78%, respectively, with negligible accuracy losses. The tested DNN accelerator modules with our multiplier obtain up to 18.70% smaller area and 9.99% less power consumption than the original modules.