Abstract:Embedding-as-a-Service (EaaS) has emerged as a successful business pattern but faces significant challenges related to various forms of copyright infringement, including API misuse and different attacks. Various studies have proposed backdoor-based watermarking schemes to protect the copyright of EaaS services. In this paper, we reveal that previous watermarking schemes possess semantic-independent characteristics and propose the Semantic Perturbation Attack (SPA). Our theoretical and experimental analyses demonstrate that this semantic-independent nature makes current watermarking schemes vulnerable to adaptive attacks that exploit semantic perturbations test to bypass watermark verification. To address this vulnerability, we propose the Semantic Aware Watermarking (SAW) scheme, a robust defense mechanism designed to resist SPA, by injecting a watermark that adapts to the text semantics. Extensive experimental results across multiple datasets demonstrate that the True Positive Rate (TPR) for detecting watermarked samples under SPA can reach up to more than 95%, rendering previous watermarks ineffective. Meanwhile, our watermarking scheme can resist such attack while ensuring the watermark verification capability. Our code is available at https://github.com/Zk4-ps/EaaS-Embedding-Watermark.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across a variety of tasks in different domains. However, they sometimes generate responses that are logically coherent but factually incorrect or misleading, which is known as LLM hallucinations. Data-driven supervised methods train hallucination detectors by leveraging the internal states of LLMs, but detectors trained on specific domains often struggle to generalize well to other domains. In this paper, we aim to enhance the cross-domain performance of supervised detectors with only in-domain data. We propose a novel framework, prompt-guided internal states for hallucination detection of LLMs, namely PRISM. By utilizing appropriate prompts to guide changes in the structure related to text truthfulness within the LLM's internal states, we make this structure more salient and consistent across texts from different domains. We integrated our framework with existing hallucination detection methods and conducted experiments on datasets from different domains. The experimental results indicate that our framework significantly enhances the cross-domain generalization of existing hallucination detection methods.
Abstract:Backdoor attacks pose an increasingly severe security threat to Deep Neural Networks (DNNs) during their development stage. In response, backdoor sample purification has emerged as a promising defense mechanism, aiming to eliminate backdoor triggers while preserving the integrity of the clean content in the samples. However, existing approaches have been predominantly focused on the word space, which are ineffective against feature-space triggers and significantly impair performance on clean data. To address this, we introduce a universal backdoor defense that purifies backdoor samples in the activation space by drawing abnormal activations towards optimized minimum clean activation distribution intervals. The advantages of our approach are twofold: (1) By operating in the activation space, our method captures from surface-level information like words to higher-level semantic concepts such as syntax, thus counteracting diverse triggers; (2) the fine-grained continuous nature of the activation space allows for more precise preservation of clean content while removing triggers. Furthermore, we propose a detection module based on statistical information of abnormal activations, to achieve a better trade-off between clean accuracy and defending performance.
Abstract:By introducing the Fermat number transform into chromatic dispersion compensation and adaptive equalization, the computational complexity has been reduced by 68% compared with the con?ventional implementation. Experimental results validate its transmission performance with only 0.8 dB receiver sensitivity penalty in a 75 km-40 GBaud-PDM-16QAM system.
Abstract:For the past few years, the Consumer Internet of Things (CIoT) has entered public lives. While CIoT has improved the convenience of people's daily lives, it has also brought new security and privacy concerns. In this survey, we try to figure out what researchers can learn about the security and privacy of CIoT by traffic analysis, a popular method in the security community. From the security and privacy perspective, this survey seeks out the new characteristics in CIoT traffic analysis, the state-of-the-art progress in CIoT traffic analysis, and the challenges yet to be solved. We collected 310 papers from January 2018 to December 2023 related to CIoT traffic analysis from the security and privacy perspective and summarized the process of CIoT traffic analysis in which the new characteristics of CIoT are identified. Then, we detail existing works based on five application goals: device fingerprinting, user activity inference, malicious traffic analysis, security analysis, and measurement. At last, we discuss the new challenges and future research directions.
Abstract:Enterprises and organizations are faced with potential threats from insider employees that may lead to serious consequences. Previous studies on insider threat detection (ITD) mainly focus on detecting abnormal users or abnormal time periods (e.g., a week or a day). However, a user may have hundreds of thousands of activities in the log, and even within a day there may exist thousands of activities for a user, requiring a high investigation budget to verify abnormal users or activities given the detection results. On the other hand, existing works are mainly post-hoc methods rather than real-time detection, which can not report insider threats in time before they cause loss. In this paper, we conduct the first study towards real-time ITD at activity level, and present a fine-grained and efficient framework LAN. Specifically, LAN simultaneously learns the temporal dependencies within an activity sequence and the relationships between activities across sequences with graph structure learning. Moreover, to mitigate the data imbalance problem in ITD, we propose a novel hybrid prediction loss, which integrates self-supervision signals from normal activities and supervision signals from abnormal activities into a unified loss for anomaly detection. We evaluate the performance of LAN on two widely used datasets, i.e., CERT r4.2 and CERT r5.2. Extensive and comparative experiments demonstrate the superiority of LAN, outperforming 9 state-of-the-art baselines by at least 9.92% and 6.35% in AUC for real-time ITD on CERT r4.2 and r5.2, respectively. Moreover, LAN can be also applied to post-hoc ITD, surpassing 8 competitive baselines by at least 7.70% and 4.03% in AUC on two datasets. Finally, the ablation study, parameter analysis, and compatibility analysis evaluate the impact of each module and hyper-parameter in LAN. The source code can be obtained from https://github.com/Li1Neo/LAN.
Abstract:With the rapid development of autonomous driving, collision avoidance has attracted attention from both academia and industry. Many collision avoidance strategies have emerged in recent years, but the dynamic and complex nature of driving environment poses a challenge to develop robust collision avoidance algorithms. Therefore, in this paper, we propose a decentralized framework named RACE: Reinforced Cooperative Autonomous Vehicle Collision AvoidancE. Leveraging a hierarchical architecture we develop an algorithm named Co-DDPG to efficiently train autonomous vehicles. Through a security abiding channel, the autonomous vehicles distribute their driving policies. We use the relative distances obtained by the opponent sensors to build the VANET instead of locations, which ensures the vehicle's location privacy. With a leader-follower architecture and parameter distribution, RACE accelerates the learning of optimal policies and efficiently utilizes the remaining resources. We implement the RACE framework in the widely used TORCS simulator and conduct various experiments to measure the performance of RACE. Evaluations show that RACE quickly learns optimal driving policies and effectively avoids collisions. Moreover, RACE also scales smoothly with varying number of participating vehicles. We further compared RACE with existing autonomous driving systems and show that RACE outperforms them by experiencing 65% less collisions in the training process and exhibits improved performance under varying vehicle density.