Abstract:Multi-modal models have gained significant attention due to their powerful capabilities. These models effectively align embeddings across diverse data modalities, showcasing superior performance in downstream tasks compared to their unimodal counterparts. Recent study showed that the attacker can manipulate an image or audio file by altering it in such a way that its embedding matches that of an attacker-chosen targeted input, thereby deceiving downstream models. However, this method often underperforms due to inherent disparities in data from different modalities. In this paper, we introduce CrossFire, an innovative approach to attack multi-modal models. CrossFire begins by transforming the targeted input chosen by the attacker into a format that matches the modality of the original image or audio file. We then formulate our attack as an optimization problem, aiming to minimize the angular deviation between the embeddings of the transformed input and the modified image or audio file. Solving this problem determines the perturbations to be added to the original media. Our extensive experiments on six real-world benchmark datasets reveal that CrossFire can significantly manipulate downstream tasks, surpassing existing attacks. Additionally, we evaluate six defensive strategies against CrossFire, finding that current defenses are insufficient to counteract our CrossFire.
Abstract:In recent years, multi-objective optimization (MOO) emerges as a foundational problem underpinning many multi-agent multi-task learning applications. However, existing algorithms in MOO literature remain limited to centralized learning settings, which do not satisfy the distributed nature and data privacy needs of such multi-agent multi-task learning applications. This motivates us to propose a new federated multi-objective learning (FMOL) framework with multiple clients distributively and collaboratively solving an MOO problem while keeping their training data private. Notably, our FMOL framework allows a different set of objective functions across different clients to support a wide range of applications, which advances and generalizes the MOO formulation to the federated learning paradigm for the first time. For this FMOL framework, we propose two new federated multi-objective optimization (FMOO) algorithms called federated multi-gradient descent averaging (FMGDA) and federated stochastic multi-gradient descent averaging (FSMGDA). Both algorithms allow local updates to significantly reduce communication costs, while achieving the {\em same} convergence rates as those of the their algorithmic counterparts in the single-objective federated learning. Our extensive experiments also corroborate the efficacy of our proposed FMOO algorithms.
Abstract:Recently, min-max optimization problems have received increasing attention due to their wide range of applications in machine learning (ML). However, most existing min-max solution techniques are either single-machine or distributed algorithms coordinated by a central server. In this paper, we focus on the decentralized min-max optimization for learning with domain constraints, where multiple agents collectively solve a nonconvex-strongly-concave min-max saddle point problem without coordination from any server. Decentralized min-max optimization problems with domain constraints underpins many important ML applications, including multi-agent ML fairness assurance, and policy evaluations in multi-agent reinforcement learning. We propose an algorithm called PRECISION (proximal gradient-tracking and stochastic recursive variance reduction) that enjoys a convergence rate of $O(1/T)$, where $T$ is the maximum number of iterations. To further reduce sample complexity, we propose PRECISION$^+$ with an adaptive batch size technique. We show that the fast $O(1/T)$ convergence of PRECISION and PRECISION$^+$ to an $\epsilon$-stationary point imply $O(\epsilon^{-2})$ communication complexity and $O(m\sqrt{n}\epsilon^{-2})$ sample complexity, where $m$ is the number of agents and $n$ is the size of dataset at each agent. To our knowledge, this is the first work that achieves $O(\epsilon^{-2})$ in both sample and communication complexities in decentralized min-max learning with domain constraints. Our experiments also corroborate the theoretical results.
Abstract:Decentralized bilevel optimization has received increasing attention recently due to its foundational role in many emerging multi-agent learning paradigms (e.g., multi-agent meta-learning and multi-agent reinforcement learning) over peer-to-peer edge networks. However, to work with the limited computation and communication capabilities of edge networks, a major challenge in developing decentralized bilevel optimization techniques is to lower sample and communication complexities. This motivates us to develop a new decentralized bilevel optimization called DIAMOND (decentralized single-timescale stochastic approximation with momentum and gradient-tracking). The contributions of this paper are as follows: i) our DIAMOND algorithm adopts a single-loop structure rather than following the natural double-loop structure of bilevel optimization, which offers low computation and implementation complexity; ii) compared to existing approaches, the DIAMOND algorithm does not require any full gradient evaluations, which further reduces both sample and computational complexities; iii) through a careful integration of momentum information and gradient tracking techniques, we show that the DIAMOND algorithm enjoys $\mathcal{O}(\epsilon^{-3/2})$ in sample and communication complexities for achieving an $\epsilon$-stationary solution, both of which are independent of the dataset sizes and significantly outperform existing works. Extensive experiments also verify our theoretical findings.
Abstract:To lower the communication complexity of federated min-max learning, a natural approach is to utilize the idea of infrequent communications (through multiple local updates) same as in conventional federated learning. However, due to the more complicated inter-outer problem structure in federated min-max learning, theoretical understandings of communication complexity for federated min-max learning with infrequent communications remain very limited in the literature. This is particularly true for settings with non-i.i.d. datasets and partial client participation. To address this challenge, in this paper, we propose a new algorithmic framework called stochastic sampling averaging gradient descent ascent (SAGDA), which i) assembles stochastic gradient estimators from randomly sampled clients as control variates and ii) leverages two learning rates on both server and client sides. We show that SAGDA achieves a linear speedup in terms of both the number of clients and local update steps, which yields an $\mathcal{O}(\epsilon^{-2})$ communication complexity that is orders of magnitude lower than the state of the art. Interestingly, by noting that the standard federated stochastic gradient descent ascent (FSGDA) is in fact a control-variate-free special version of SAGDA, we immediately arrive at an $\mathcal{O}(\epsilon^{-2})$ communication complexity result for FSGDA. Therefore, through the lens of SAGDA, we also advance the current understanding on communication complexity of the standard FSGDA method for federated min-max learning.
Abstract:To increase the training speed of distributed learning, recent years have witnessed a significant amount of interest in developing both synchronous and asynchronous distributed stochastic variance-reduced optimization methods. However, all existing synchronous and asynchronous distributed training algorithms suffer from various limitations in either convergence speed or implementation complexity. This motivates us to propose an algorithm called STNTHESIS (semi-asynchronous path-integrated stochastic gradient search), which leverages the special structure of the variance-reduction framework to overcome the limitations of both synchronous and asynchronous distributed learning algorithms while retaining their salient features. We consider two implementations of STNTHESIS under distributed and shared memory architectures. We show that our STNTHESIS algorithms have $O(\sqrt{N}\epsilon^{-2}(\Delta+1)+N)$ and $O(\sqrt{N}\epsilon^{-2}(\Delta+1) d+N)$ computational complexities for achieving an $\epsilon$-stationary point in non-convex learning under distributed and shared memory architectures, respectively, where N denotes the total number of training samples and $\Delta$ represents the maximum delay of the workers. Moreover, we investigate the generalization performance of \algname by establishing algorithmic stability bounds for quadratic strongly convex and non-convex optimization. We further conduct extensive numerical experiments to verify our theoretical findings
Abstract:Federated learning (FL) has received a surge of interest in recent years thanks to its benefits in data privacy protection, efficient communication, and parallel data processing. Also, with appropriate algorithmic designs, one could achieve the desirable linear speedup for convergence effect in FL. However, most existing works on FL are limited to systems with i.i.d. data and centralized parameter servers and results on decentralized FL with heterogeneous datasets remains limited. Moreover, whether or not the linear speedup for convergence is achievable under fully decentralized FL with data heterogeneity remains an open question. In this paper, we address these challenges by proposing a new algorithm, called NET-FLEET, for fully decentralized FL systems with data heterogeneity. The key idea of our algorithm is to enhance the local update scheme in FL (originally intended for communication efficiency) by incorporating a recursive gradient correction technique to handle heterogeneous datasets. We show that, under appropriate parameter settings, the proposed NET-FLEET algorithm achieves a linear speedup for convergence. We further conduct extensive numerical experiments to evaluate the performance of the proposed NET-FLEET algorithm and verify our theoretical findings.
Abstract:In recent years, decentralized bilevel optimization problems have received increasing attention in the networking and machine learning communities thanks to their versatility in modeling decentralized learning problems over peer-to-peer networks (e.g., multi-agent meta-learning, multi-agent reinforcement learning, personalized training, and Byzantine-resilient learning). However, for decentralized bilevel optimization over peer-to-peer networks with limited computation and communication capabilities, how to achieve low sample and communication complexities are two fundamental challenges that remain under-explored so far. In this paper, we make the first attempt to investigate the class of decentralized bilevel optimization problems with nonconvex and strongly-convex structure corresponding to the outer and inner subproblems, respectively. Our main contributions in this paper are two-fold: i) We first propose a deterministic algorithm called INTERACT (inner-gradient-descent-outer-tracked-gradient) that requires the sample complexity of $\mathcal{O}(n \epsilon^{-1})$ and communication complexity of $\mathcal{O}(\epsilon^{-1})$ to solve the bilevel optimization problem, where $n$ and $\epsilon > 0$ are the number of samples at each agent and the desired stationarity gap, respectively. ii) To relax the need for full gradient evaluations in each iteration, we propose a stochastic variance-reduced version of INTERACT (SVR-INTERACT), which improves the sample complexity to $\mathcal{O}(\sqrt{n} \epsilon^{-1})$ while achieving the same communication complexity as the deterministic algorithm. To our knowledge, this work is the first that achieves both low sample and communication complexities for solving decentralized bilevel optimization problems over networks. Our numerical experiments also corroborate our theoretical findings.
Abstract:In the past decade, with the development of big data technology, an increasing amount of patient information has been stored as electronic health records (EHRs). Leveraging these data, various doctor recommendation systems have been proposed. Typically, such studies process the EHR data in a flat-structured manner, where each encounter was treated as an unordered set of features. Nevertheless, the heterogeneous structured information such as service sequence stored in claims shall not be ignored. This paper presents a doctor recommendation system with time embedding to reconstruct the potential connections between patients and doctors using heterogeneous graph attention network. Besides, to address the privacy issue of patient data sharing crossing hospitals, a federated decentralized learning method based on a minimization optimization model is also proposed. The graph-based recommendation system has been validated on a EHR dataset. Compared to baseline models, the proposed method improves the AUC by up to 6.2%. And our proposed federated-based algorithm not only yields the fictitious fusion center's performance but also enjoys a convergence rate of O(1/T).
Abstract:Simulation workflow is a top-level model for the design and control of simulation process. It connects multiple simulation components with time and interaction restrictions to form a complete simulation system. Before the construction and evaluation of the component models, the validation of upper-layer simulation workflow is of the most importance in a simulation system. However, the methods especially for validating simulation workflow is very limit. Many of the existing validation techniques are domain-dependent with cumbersome questionnaire design and expert scoring. Therefore, this paper present an empirical learning-based validation procedure to implement a semi-automated evaluation for simulation workflow. First, representative features of general simulation workflow and their relations with validation indices are proposed. The calculation process of workflow credibility based on Analytic Hierarchy Process (AHP) is then introduced. In order to make full use of the historical data and implement more efficient validation, four learning algorithms, including back propagation neural network (BPNN), extreme learning machine (ELM), evolving new-neuron (eNFN) and fast incremental gaussian mixture model (FIGMN), are introduced for constructing the empirical relation between the workflow credibility and its features. A case study on a landing-process simulation workflow is established to test the feasibility of the proposed procedure. The experimental results also provide some useful overview of the state-of-the-art learning algorithms on the credibility evaluation of simulation models.