Abstract:This is a report on the NSF Future Directions Workshop on Automatic Evaluation of Dialog. The workshop explored the current state of the art along with its limitations and suggested promising directions for future work in this important and very rapidly changing area of research.
Abstract:Evaluation metrics in machine learning are often hardly taken as loss functions, as they could be non-differentiable and non-decomposable, e.g., average precision and F1 score. This paper aims to address this problem by revisiting the surrogate loss learning, where a deep neural network is employed to approximate the evaluation metrics. Instead of pursuing an exact recovery of the evaluation metric through a deep neural network, we are reminded of the purpose of the existence of these evaluation metrics, which is to distinguish whether one model is better or worse than another. In this paper, we show that directly maintaining the relation of models between surrogate losses and metrics suffices, and propose a rank correlation-based optimization method to maximize this relation and learn surrogate losses. Compared to previous works, our method is much easier to optimize and enjoys significant efficiency and performance gains. Extensive experiments show that our method achieves improvements on various tasks including image classification and neural machine translation, and even outperforms state-of-the-art methods on human pose estimation and machine reading comprehension tasks. Code is available at: https://github.com/hunto/ReLoss.
Abstract:Previous researches on dialogue system assessment usually focus on the quality evaluation (e.g. fluency, relevance, etc) of responses generated by the chatbots, which are local and technical metrics. For a chatbot which responds to millions of online users including minors, we argue that it should have a healthy mental tendency in order to avoid the negative psychological impact on them. In this paper, we establish several mental health assessment dimensions for chatbots (depression, anxiety, alcohol addiction, empathy) and introduce the questionnaire-based mental health assessment methods. We conduct assessments on some well-known open-domain chatbots and find that there are severe mental health issues for all these chatbots. We consider that it is due to the neglect of the mental health risks during the dataset building and the model training procedures. We expect to attract researchers' attention to the serious mental health problems of chatbots and improve the chatbots' ability in positive emotional interaction.
Abstract:Current state-of-the-art approaches for image captioning typically adopt an autoregressive manner, i.e., generating descriptions word by word, which suffers from slow decoding issue and becomes a bottleneck in real-time applications. Non-autoregressive image captioning with continuous iterative refinement, which eliminates the sequential dependence in a sentence generation, can achieve comparable performance to the autoregressive counterparts with a considerable acceleration. Nevertheless, based on a well-designed experiment, we empirically proved that iteration times can be effectively reduced when providing sufficient prior knowledge for the language decoder. Towards that end, we propose a novel two-stage framework, referred to as Semi-Autoregressive Image Captioning (SAIC), to make a better trade-off between performance and speed. The proposed SAIC model maintains autoregressive property in global but relieves it in local. Specifically, SAIC model first jumpily generates an intermittent sequence in an autoregressive manner, that is, it predicts the first word in every word group in order. Then, with the help of the partially deterministic prior information and image features, SAIC model non-autoregressively fills all the skipped words with one iteration. Experimental results on the MS COCO benchmark demonstrate that our SAIC model outperforms the preceding non-autoregressive image captioning models while obtaining a competitive inference speedup. Code is available at https://github.com/feizc/SAIC.
Abstract:As a kind of new expression elements, Internet memes are popular and extensively used in online chatting scenarios since they manage to make dialogues vivid, moving, and interesting. However, most current dialogue researches focus on text-only dialogue tasks. In this paper, we propose a new task named as \textbf{M}eme incorporated \textbf{O}pen-domain \textbf{D}ialogue (MOD). Compared to previous dialogue tasks, MOD is much more challenging since it requires the model to understand the multimodal elements as well as the emotions behind them. To facilitate the MOD research, we construct a large-scale open-domain multimodal dialogue dataset incorporating abundant Internet memes into utterances. The dataset consists of $\sim$45K Chinese conversations with $\sim$606K utterances. Each conversation contains about $13$ utterances with about $4$ Internet memes on average and each utterance equipped with an Internet meme is annotated with the corresponding emotion. In addition, we present a simple and effective method, which utilizes a unified generation network to solve the MOD task. Experimental results demonstrate that our method trained on the proposed corpus is able to achieve expressive communication including texts and memes. The corpus and models have been publicly available at https://github.com/lizekang/DSTC10-MOD.
Abstract:A good open-domain chatbot should avoid presenting contradictory responses about facts or opinions in a conversational session, known as its consistency capacity. However, evaluating the consistency capacity of a chatbot is still challenging. Employing human judges to interact with chatbots on purpose to check their capacities is costly and low-efficient, and difficult to get rid of subjective bias. In this paper, we propose the Addressing Inquiries about History (AIH), an efficient and practical framework for the consistency evaluation. At the conversation stage, AIH attempts to address appropriate inquiries about the dialogue history to induce the chatbot to redeclare the historical facts or opinions. We carry out the conversation between chatbots, which is more efficient than the human-bot interaction and can also alleviate the subjective bias. In this way, we manage to rapidly obtain a dialog session that contains responses with high contradiction possibilities. At the contradiction recognition stage, we can either employ human judges or a natural language inference (NLI) model to recognize whether the answers to the inquiries are contradictory with history. Finally, we are able to rank chatbots according to the contradiction statistics. Experiments on open-domain chatbots show that our approach can efficiently and reliably assess the consistency capacity of chatbots and achieve a high ranking correlation with the human evaluation. We release the framework and hope to help improve the consistency capacity of chatbots. \footnote{\url{https://github.com/ictnlp/AIH}}
Abstract:Nowadays, open-domain dialogue models can generate acceptable responses according to the historical context based on the large-scale pre-trained language models. However, they generally concatenate the dialogue history directly as the model input to predict the response, which we named as the flat pattern and ignores the dynamic information flow across dialogue utterances. In this work, we propose the DialoFlow model, in which we introduce a dynamic flow mechanism to model the context flow, and design three training objectives to capture the information dynamics across dialogue utterances by addressing the semantic influence brought about by each utterance in large-scale pre-training. Experiments on the multi-reference Reddit Dataset and DailyDialog Dataset demonstrate that our DialoFlow significantly outperforms the DialoGPT on the dialogue generation task. Besides, we propose the Flow score, an effective automatic metric for evaluating interactive human-bot conversation quality based on the pre-trained DialoFlow, which presents high chatbot-level correlation ($r=0.9$) with human ratings among 11 chatbots. Code and pre-trained models will be public. \footnote{\url{https://github.com/ictnlp/DialoFlow}}
Abstract:We participate in the DSTC9 Interactive Dialogue Evaluation Track (Gunasekara et al. 2020) sub-task 1 (Knowledge Grounded Dialogue) and sub-task 2 (Interactive Dialogue). In sub-task 1, we employ a pre-trained language model to generate topic-related responses and propose a response ensemble method for response selection. In sub-task2, we propose a novel Dialogue Planning Model (DPM) to capture conversation flow in the interaction with humans. We also design an integrated open-domain dialogue system containing pre-process, dialogue model, scoring model, and post-process, which can generate fluent, coherent, consistent, and humanlike responses. We tie 1st on human ratings and also get the highest Meteor, and Bert-score in sub-task 1, and rank 3rd on interactive human evaluation in sub-task 2.
Abstract:Recent studies in dialogue state tracking (DST) leverage historical information to determine states which are generally represented as slot-value pairs. However, most of them have limitations to efficiently exploit relevant context due to the lack of a powerful mechanism for modeling interactions between the slot and the dialogue history. Besides, existing methods usually ignore the slot imbalance problem and treat all slots indiscriminately, which limits the learning of hard slots and eventually hurts overall performance. In this paper, we propose to enhance the DST through employing a contextual hierarchical attention network to not only discern relevant information at both word level and turn level but also learn contextual representations. We further propose an adaptive objective to alleviate the slot imbalance problem by dynamically adjust weights of different slots during training. Experimental results show that our approach reaches 52.68% and 58.55% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets respectively and achieves new state-of-the-art performance with considerable improvements (+1.24% and +5.98%).
Abstract:Recently, variational auto-encoder (VAE) based approaches have made impressive progress on improving the diversity of generated responses. However, these methods usually suffer the cost of decreased relevance accompanied by diversity improvements. In this paper, we propose a novel multimodal response generation framework with exemplar augmentation and curriculum optimization to enhance relevance and diversity of generated responses. First, unlike existing VAE-based models that usually approximate a simple Gaussian posterior distribution, we present a Gaussian mixture posterior distribution (i.e, multimodal) to further boost response diversity, which helps capture complex semantics of responses. Then, to ensure that relevance does not decrease while diversity increases, we fully exploit similar examples (exemplars) retrieved from the training data into posterior distribution modeling to augment response relevance. Furthermore, to facilitate the convergence of Gaussian mixture prior and posterior distributions, we devise a curriculum optimization strategy to progressively train the model under multiple training criteria from easy to hard. Experimental results on widely used SwitchBoard and DailyDialog datasets demonstrate that our model achieves significant improvements compared to strong baselines in terms of diversity and relevance.