Abstract:This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as \texttt{Ingredients}. Generally, our method consists of three primary modules: (\textbf{i}) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (\textbf{ii}) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (\textbf{iii}) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, \texttt{Ingredients} demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: \url{https://github.com/feizc/Ingredients}.
Abstract:This paper investigates a solution for enabling in-context capabilities of video diffusion transformers, with minimal tuning required for activation. Specifically, we propose a simple pipeline to leverage in-context generation: ($\textbf{i}$) concatenate videos along spacial or time dimension, ($\textbf{ii}$) jointly caption multi-scene video clips from one source, and ($\textbf{iii}$) apply task-specific fine-tuning using carefully curated small datasets. Through a series of diverse controllable tasks, we demonstrate qualitatively that existing advanced text-to-video models can effectively perform in-context generation. Notably, it allows for the creation of consistent multi-scene videos exceeding 30 seconds in duration, without additional computational overhead. Importantly, this method requires no modifications to the original models, results in high-fidelity video outputs that better align with prompt specifications and maintain role consistency. Our framework presents a valuable tool for the research community and offers critical insights for advancing product-level controllable video generation systems. The data, code, and model weights are publicly available at: \url{https://github.com/feizc/Video-In-Context}.
Abstract:This paper explores a simple extension of diffusion-based rectified flow Transformers for text-to-music generation, termed as FluxMusic. Generally, along with design in advanced Flux\footnote{https://github.com/black-forest-labs/flux} model, we transfers it into a latent VAE space of mel-spectrum. It involves first applying a sequence of independent attention to the double text-music stream, followed by a stacked single music stream for denoised patch prediction. We employ multiple pre-trained text encoders to sufficiently capture caption semantic information as well as inference flexibility. In between, coarse textual information, in conjunction with time step embeddings, is utilized in a modulation mechanism, while fine-grained textual details are concatenated with the music patch sequence as inputs. Through an in-depth study, we demonstrate that rectified flow training with an optimized architecture significantly outperforms established diffusion methods for the text-to-music task, as evidenced by various automatic metrics and human preference evaluations. Our experimental data, code, and model weights are made publicly available at: \url{https://github.com/feizc/FluxMusic}.
Abstract:In this paper, we present DiT-MoE, a sparse version of the diffusion Transformer, that is scalable and competitive with dense networks while exhibiting highly optimized inference. The DiT-MoE includes two simple designs: shared expert routing and expert-level balance loss, thereby capturing common knowledge and reducing redundancy among the different routed experts. When applied to conditional image generation, a deep analysis of experts specialization gains some interesting observations: (i) Expert selection shows preference with spatial position and denoising time step, while insensitive with different class-conditional information; (ii) As the MoE layers go deeper, the selection of experts gradually shifts from specific spacial position to dispersion and balance. (iii) Expert specialization tends to be more concentrated at the early time step and then gradually uniform after half. We attribute it to the diffusion process that first models the low-frequency spatial information and then high-frequency complex information. Based on the above guidance, a series of DiT-MoE experimentally achieves performance on par with dense networks yet requires much less computational load during inference. More encouragingly, we demonstrate the potential of DiT-MoE with synthesized image data, scaling diffusion model at a 16.5B parameter that attains a new SoTA FID-50K score of 1.80 in 512$\times$512 resolution settings. The project page: https://github.com/feizc/DiT-MoE.
Abstract:This paper unveils Dimba, a new text-to-image diffusion model that employs a distinctive hybrid architecture combining Transformer and Mamba elements. Specifically, Dimba sequentially stacked blocks alternate between Transformer and Mamba layers, and integrate conditional information through the cross-attention layer, thus capitalizing on the advantages of both architectural paradigms. We investigate several optimization strategies, including quality tuning, resolution adaption, and identify critical configurations necessary for large-scale image generation. The model's flexible design supports scenarios that cater to specific resource constraints and objectives. When scaled appropriately, Dimba offers substantial throughput and a reduced memory footprint relative to conventional pure Transformers-based benchmarks. Extensive experiments indicate that Dimba achieves comparable performance compared with benchmarks in terms of image quality, artistic rendering, and semantic control. We also report several intriguing properties of architecture discovered during evaluation and release checkpoints in experiments. Our findings emphasize the promise of large-scale hybrid Transformer-Mamba architectures in the foundational stage of diffusion models, suggesting a bright future for text-to-image generation.
Abstract:Consistency models have exhibited remarkable capabilities in facilitating efficient image/video generation, enabling synthesis with minimal sampling steps. It has proven to be advantageous in mitigating the computational burdens associated with diffusion models. Nevertheless, the application of consistency models in music generation remains largely unexplored. To address this gap, we present Music Consistency Models (\texttt{MusicCM}), which leverages the concept of consistency models to efficiently synthesize mel-spectrogram for music clips, maintaining high quality while minimizing the number of sampling steps. Building upon existing text-to-music diffusion models, the \texttt{MusicCM} model incorporates consistency distillation and adversarial discriminator training. Moreover, we find it beneficial to generate extended coherent music by incorporating multiple diffusion processes with shared constraints. Experimental results reveal the effectiveness of our model in terms of computational efficiency, fidelity, and naturalness. Notable, \texttt{MusicCM} achieves seamless music synthesis with a mere four sampling steps, e.g., only one second per minute of the music clip, showcasing the potential for real-time application.
Abstract:Transformers have catalyzed advancements in computer vision and natural language processing (NLP) fields. However, substantial computational complexity poses limitations for their application in long-context tasks, such as high-resolution image generation. This paper introduces a series of architectures adapted from the RWKV model used in the NLP, with requisite modifications tailored for diffusion model applied to image generation tasks, referred to as Diffusion-RWKV. Similar to the diffusion with Transformers, our model is designed to efficiently handle patchnified inputs in a sequence with extra conditions, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage manifests in its reduced spatial aggregation complexity, rendering it exceptionally adept at processing high-resolution images, thereby eliminating the necessity for windowing or group cached operations. Experimental results on both condition and unconditional image generation tasks demonstrate that Diffison-RWKV achieves performance on par with or surpasses existing CNN or Transformer-based diffusion models in FID and IS metrics while significantly reducing total computation FLOP usage.
Abstract:This paper presents a new exploration into a category of diffusion models built upon state space architecture. We endeavor to train diffusion models for image data, wherein the traditional U-Net backbone is supplanted by a state space backbone, functioning on raw patches or latent space. Given its notable efficacy in accommodating long-range dependencies, Diffusion State Space Models (DiS) are distinguished by treating all inputs including time, condition, and noisy image patches as tokens. Our assessment of DiS encompasses both unconditional and class-conditional image generation scenarios, revealing that DiS exhibits comparable, if not superior, performance to CNN-based or Transformer-based U-Net architectures of commensurate size. Furthermore, we analyze the scalability of DiS, gauged by the forward pass complexity quantified in Gflops. DiS models with higher Gflops, achieved through augmentation of depth/width or augmentation of input tokens, consistently demonstrate lower FID. In addition to demonstrating commendable scalability characteristics, DiS-H/2 models in latent space achieve performance levels akin to prior diffusion models on class-conditional ImageNet benchmarks at the resolution of 256$\times$256 and 512$\times$512, while significantly reducing the computational burden. The code and models are available at: https://github.com/feizc/DiS.
Abstract:Consistent editing of real images is a challenging task, as it requires performing non-rigid edits (e.g., changing postures) to the main objects in the input image without changing their identity or attributes. To guarantee consistent attributes, some existing methods fine-tune the entire model or the textual embedding for structural consistency, but they are time-consuming and fail to perform non-rigid edits. Other works are tuning-free, but their performances are weakened by the quality of Denoising Diffusion Implicit Model (DDIM) reconstruction, which often fails in real-world scenarios. In this paper, we present a novel approach called Tuning-free Inversion-enhanced Control (TIC), which directly correlates features from the inversion process with those from the sampling process to mitigate the inconsistency in DDIM reconstruction. Specifically, our method effectively obtains inversion features from the key and value features in the self-attention layers, and enhances the sampling process by these inversion features, thus achieving accurate reconstruction and content-consistent editing. To extend the applicability of our method to general editing scenarios, we also propose a mask-guided attention concatenation strategy that combines contents from both the inversion and the naive DDIM editing processes. Experiments show that the proposed method outperforms previous works in reconstruction and consistent editing, and produces impressive results in various settings.
Abstract:This paper presents that the masked-modeling principle driving the success of large foundational vision models can be effectively applied to audio by making predictions in a latent space. We introduce Audio-based Joint-Embedding Predictive Architecture (A-JEPA), a simple extension method for self-supervised learning from the audio spectrum. Following the design of I-JEPA, our A-JEPA encodes visible audio spectrogram patches with a curriculum masking strategy via context encoder, and predicts the representations of regions sampled at well-designed locations. The target representations of those regions are extracted by the exponential moving average of context encoder, \emph{i.e.}, target encoder, on the whole spectrogram. We find it beneficial to transfer random block masking into time-frequency aware masking in a curriculum manner, considering the complexity of highly correlated in local time and frequency in audio spectrograms. To enhance contextual semantic understanding and robustness, we fine-tune the encoder with a regularized masking on target datasets, instead of input dropping or zero. Empirically, when built with Vision Transformers structure, we find A-JEPA to be highly scalable and sets new state-of-the-art performance on multiple audio and speech classification tasks, outperforming other recent models that use externally supervised pre-training.