Abstract:Large Language Models (LLMs) have significantly transformed our daily life and established a new paradigm in natural language processing (NLP). However, the predominant pretraining of LLMs on extensive web-based texts remains insufficient for advanced scientific discovery, particularly in chemistry. The scarcity of specialized chemistry data, coupled with the complexity of multi-modal data such as 2D graph, 3D structure and spectrum, present distinct challenges. Although several studies have reviewed Pretrained Language Models (PLMs) in chemistry, there is a conspicuous absence of a systematic survey specifically focused on chemistry-oriented LLMs. In this paper, we outline methodologies for incorporating domain-specific chemistry knowledge and multi-modal information into LLMs, we also conceptualize chemistry LLMs as agents using chemistry tools and investigate their potential to accelerate scientific research. Additionally, we conclude the existing benchmarks to evaluate chemistry ability of LLMs. Finally, we critically examine the current challenges and identify promising directions for future research. Through this comprehensive survey, we aim to assist researchers in staying at the forefront of developments in chemistry LLMs and to inspire innovative applications in the field.
Abstract:The ideal estimand for comparing a new treatment $Rx$ with a control $C$ is the $\textit{counterfactual}$ efficacy $Rx:C$, the expected differential outcome between $Rx$ and $C$ if each patient were given $\textit{both}$. While counterfactual $\textit{point estimation}$ from $\textit{factual}$ Randomized Controlled Trials (RCTs) has been available, this article shows $\textit{counterfactual}$ uncertainty quantification (CUQ), quantifying uncertainty for factual point estimates but in a counterfactual setting, is surprisingly achievable. We achieve CUQ whose variability is typically smaller than factual UQ, by creating a new statistical modeling principle called ETZ which is applicable to RCTs with $\textit{Before-and-After}$ treatment Repeated Measures, common in many therapeutic areas. We urge caution when estimate of the unobservable true condition of a patient before treatment has measurement error, because that violation of standard regression assumption can cause attenuation in estimating treatment effects. Fortunately, we prove that, for traditional medicine in general, and for targeted therapy with efficacy defined as averaged over the population, counterfactual point estimation is unbiased. However, for targeted therapy, both Real Human and Digital Twins approaches should respect this limitation, lest predicted treatment effect in $\textit{subgroups}$ will have bias.
Abstract:Self-play methods have demonstrated remarkable success in enhancing model capabilities across various domains. In the context of Reinforcement Learning from Human Feedback (RLHF), self-play not only boosts Large Language Model (LLM) performance but also overcomes the limitations of traditional Bradley-Terry (BT) model assumptions by finding the Nash equilibrium (NE) of a preference-based, two-player constant-sum game. However, existing methods either guarantee only average-iterate convergence, incurring high storage and inference costs, or converge to the NE of a regularized game, failing to accurately reflect true human preferences. In this paper, we introduce Magnetic Preference Optimization (MPO), a novel approach capable of achieving last-iterate convergence to the NE of the original game, effectively overcoming the limitations of existing methods. Building upon Magnetic Mirror Descent (MMD), MPO attains a linear convergence rate, making it particularly suitable for fine-tuning LLMs. To ensure our algorithm is both theoretically sound and practically viable, we present a simple yet effective implementation that adapts the theoretical insights to the RLHF setting. Empirical results demonstrate that MPO can significantly enhance the performance of LLMs, highlighting the potential of self-play methods in alignment.
Abstract:Text summarization tasks commonly employ Pre-trained Language Models (PLMs) to fit diverse standard datasets. While these PLMs excel in automatic evaluations, they frequently underperform in human evaluations, indicating a deviation between their generated summaries and human summarization preferences. This discrepancy is likely due to the low quality of fine-tuning datasets and the limited availability of high-quality human-annotated data that reflect true human preference. To address this challenge, we introduce a novel human summarization preference alignment framework AlignSum. This framework consists of three parts: Firstly, we construct a Data Pymarid with extractive, abstractive, and human-annotated summary data. Secondly, we conduct the Gaussian Resampling to remove summaries with extreme lengths. Finally, we implement the two-stage hierarchical fine-tuning with Data Pymarid after Gaussian Resampling. We apply AlignSum to PLMs on the human-annotated CNN/DailyMail and BBC XSum datasets. Experiments show that with AlignSum, PLMs like BART-Large surpass 175B GPT-3 in both automatic and human evaluations. This demonstrates that AlignSum significantly enhances the alignment of language models with human summarization preferences.
Abstract:This paper explores the challenges posed by nominal adjectives (NAs) in natural language processing (NLP) tasks, particularly in part-of-speech (POS) tagging. We propose treating NAs as a distinct POS tag, "JN," and investigate its impact on POS tagging, BIO chunking, and coreference resolution. Our study shows that reclassifying NAs can improve the accuracy of syntactic analysis and structural understanding in NLP. We present experimental results using Hidden Markov Models (HMMs), Maximum Entropy (MaxEnt) models, and Spacy, demonstrating the feasibility and potential benefits of this approach. Additionally we trained a bert model to identify the NA in untagged text.
Abstract:Recently, there has been growing interest in using Large Language Models (LLMs) for scientific research. Numerous benchmarks have been proposed to evaluate the ability of LLMs for scientific research. However, current benchmarks are mostly based on pre-collected objective questions. This design suffers from data leakage problem and lacks the evaluation of subjective Q/A ability. In this paper, we propose SciEval, a comprehensive and multi-disciplinary evaluation benchmark to address these issues. Based on Bloom's taxonomy, SciEval covers four dimensions to systematically evaluate scientific research ability. In particular, we design a "dynamic" subset based on scientific principles to prevent evaluation from potential data leakage. Both objective and subjective questions are included in SciEval. These characteristics make SciEval a more effective benchmark for scientific research ability evaluation of LLMs. Comprehensive experiments on most advanced LLMs show that, although GPT-4 achieves SOTA performance compared to other LLMs, there is still substantial room for improvement, especially for dynamic questions. The data and codes are now publicly available.
Abstract:Astronomical outliers, such as unusual, rare or unknown types of astronomical objects or phenomena, constantly lead to the discovery of genuinely unforeseen knowledge in astronomy. More unpredictable outliers will be uncovered in principle with the increment of the coverage and quality of upcoming survey data. However, it is a severe challenge to mine rare and unexpected targets from enormous data with human inspection due to a significant workload. Supervised learning is also unsuitable for this purpose since designing proper training sets for unanticipated signals is unworkable. Motivated by these challenges, we adopt unsupervised machine learning approaches to identify outliers in the data of galaxy images to explore the paths for detecting astronomical outliers. For comparison, we construct three methods, which are built upon the k-nearest neighbors (KNN), Convolutional Auto-Encoder (CAE)+ KNN, and CAE + KNN + Attention Mechanism (attCAE KNN) separately. Testing sets are created based on the Galaxy Zoo image data published online to evaluate the performance of the above methods. Results show that attCAE KNN achieves the best recall (78%), which is 53% higher than the classical KNN method and 22% higher than CAE+KNN. The efficiency of attCAE KNN (10 minutes) is also superior to KNN (4 hours) and equal to CAE+KNN(10 minutes) for accomplishing the same task. Thus, we believe it is feasible to detect astronomical outliers in the data of galaxy images in an unsupervised manner. Next, we will apply attCAE KNN to available survey datasets to assess its applicability and reliability.
Abstract:This paper presents the details of our system designed for the Task 1 of Multimodal Information Based Speech Processing (MISP) Challenge 2021. The purpose of Task 1 is to leverage both audio and video information to improve the environmental robustness of far-field wake word spotting. In the proposed system, firstly, we take advantage of speech enhancement algorithms such as beamforming and weighted prediction error (WPE) to address the multi-microphone conversational audio. Secondly, several data augmentation techniques are applied to simulate a more realistic far-field scenario. For the video information, the provided region of interest (ROI) is used to obtain visual representation. Then the multi-layer CNN is proposed to learn audio and visual representations, and these representations are fed into our two-branch attention-based network which can be employed for fusion, such as transformer and conformed. The focal loss is used to fine-tune the model and improve the performance significantly. Finally, multiple trained models are integrated by casting vote to achieve our final 0.091 score.
Abstract:Human life is populated with articulated objects. A comprehensive understanding of articulated objects, namely appearance, structure, physics property, and semantics, will benefit many research communities. As current articulated object understanding solutions are usually based on synthetic object dataset with CAD models without physics properties, which prevent satisfied generalization from simulation to real-world applications in visual and robotics tasks. To bridge the gap, we present AKB-48: a large-scale Articulated object Knowledge Base which consists of 2,037 real-world 3D articulated object models of 48 categories. Each object is described by a knowledge graph ArtiKG. To build the AKB-48, we present a fast articulation knowledge modeling (FArM) pipeline, which can fulfill the ArtiKG for an articulated object within 10-15 minutes, and largely reduce the cost for object modeling in the real world. Using our dataset, we propose AKBNet, a novel integral pipeline for Category-level Visual Articulation Manipulation (C-VAM) task, in which we benchmark three sub-tasks, namely pose estimation, object reconstruction and manipulation. Dataset, codes, and models will be publicly available at https://liuliu66.github.io/articulationobjects/.
Abstract:This is a short technical report introducing the solution of the Team TCParser for Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. In this paper, we introduce a strong backbone which is cross-window based Shuffle Transformer for presenting accurate face parsing representation. To further obtain the finer segmentation results, especially on the edges, we introduce a Feature Alignment Aggregation (FAA) module. It can effectively relieve the feature misalignment issue caused by multi-resolution feature aggregation. Benefiting from the stronger backbone and better feature aggregation, the proposed method achieves 86.9519% score in the Short-video Face Parsing track of the 3rd Person in Context (PIC) Workshop and Challenge, ranked the first place.