Abstract:Large Language Models (LLMs) are widely used in complex natural language processing tasks but raise privacy and security concerns due to the lack of identity recognition. This paper proposes a multi-party credible watermarking framework (CredID) involving a trusted third party (TTP) and multiple LLM vendors to address these issues. In the watermark embedding stage, vendors request a seed from the TTP to generate watermarked text without sending the user's prompt. In the extraction stage, the TTP coordinates each vendor to extract and verify the watermark from the text. This provides a credible watermarking scheme while preserving vendor privacy. Furthermore, current watermarking algorithms struggle with text quality, information capacity, and robustness, making it challenging to meet the diverse identification needs of LLMs. Thus, we propose a novel multi-bit watermarking algorithm and an open-source toolkit to facilitate research. Experiments show our CredID enhances watermark credibility and efficiency without compromising text quality. Additionally, we successfully utilized this framework to achieve highly accurate identification among multiple LLM vendors.
Abstract:Large Large Language Models (LLMs) are increasingly integrated into diverse industries, posing substantial security risks due to unauthorized replication and misuse. To mitigate these concerns, robust identification mechanisms are widely acknowledged as an effective strategy. Identification systems for LLMs now rely heavily on watermarking technology to manage and protect intellectual property and ensure data security. However, previous studies have primarily concentrated on the basic principles of algorithms and lacked a comprehensive analysis of watermarking theory and practice from the perspective of intelligent identification. To bridge this gap, firstly, we explore how a robust identity recognition system can be effectively implemented and managed within LLMs by various participants using watermarking technology. Secondly, we propose a mathematical framework based on mutual information theory, which systematizes the identification process to achieve more precise and customized watermarking. Additionally, we present a comprehensive evaluation of performance metrics for LLM watermarking, reflecting participant preferences and advancing discussions on its identification applications. Lastly, we outline the existing challenges in current watermarking technologies and theoretical frameworks, and provide directional guidance to address these challenges. Our systematic classification and detailed exposition aim to enhance the comparison and evaluation of various methods, fostering further research and development toward a transparent, secure, and equitable LLM ecosystem.
Abstract:In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.
Abstract:Traffic simulation is a crucial tool for transportation decision-making and policy development. However, achieving realistic simulations in the face of the high dimensionality and heterogeneity of traffic environments is a longstanding challenge. In this paper, we present TransWordNG, a traffic simulator that uses Data-driven algorithms and Graph Computing techniques to learn traffic dynamics from real data. The functionality and structure of TransWorldNG are introduced, which utilize a foundation model for transportation management and control. The results demonstrate that TransWorldNG can generate more realistic traffic patterns compared to traditional simulators. Additionally, TransWorldNG exhibits better scalability, as it shows linear growth in computation time as the scenario scale increases. To the best of our knowledge, this is the first traffic simulator that can automatically learn traffic patterns from real-world data and efficiently generate accurate and realistic traffic environments.
Abstract:Efficient traffic management is crucial for maintaining urban mobility, especially in densely populated areas where congestion, accidents, and delays can lead to frustrating and expensive commutes. However, existing prediction methods face challenges in terms of optimizing a single objective and understanding the complex composition of the transportation system. Moreover, they lack the ability to understand the macroscopic system and cannot efficiently utilize big data. In this paper, we propose a novel approach, Transportation Foundation Model (TFM), which integrates the principles of traffic simulation into traffic prediction. TFM uses graph structures and dynamic graph generation algorithms to capture the participatory behavior and interaction of transportation system actors. This data-driven and model-free simulation method addresses the challenges faced by traditional systems in terms of structural complexity and model accuracy and provides a foundation for solving complex transportation problems with real data. The proposed approach shows promising results in accurately predicting traffic outcomes in an urban transportation setting.
Abstract:Many real world applications can be formulated as event forecasting on Continuous Time Dynamic Graphs (CTDGs) where the occurrence of a timed event between two entities is represented as an edge along with its occurrence timestamp in the graphs.However, most previous works approach the problem in compromised settings, either formulating it as a link prediction task on the graph given the event time or a time prediction problem given which event will happen next. In this paper, we propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP) that jointly forecasts multiple link events and their timestamps on communities over a CTDG. Moreover, to scale our model to large graphs, we factorize the jointly event prediction problem into three easier conditional probability modeling problems.To evaluate the effectiveness of our model and the rationale behind such a decomposition, we establish a set of benchmarks and evaluation metrics for this event forecasting task. Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
Abstract:Limited by the time complexity of querying k-hop neighbors in a graph database, most graph algorithms cannot be deployed online and execute millisecond-level inference. This problem dramatically limits the potential of applying graph algorithms in certain areas, such as financial fraud detection. Therefore, we propose Asynchronous Propagation Attention Network, an asynchronous continuous time dynamic graph algorithm for real-time temporal graph embedding. Traditional graph models usually execute two serial operations: first graph computation and then model inference. We decouple model inference and graph computation step so that the heavy graph query operations will not damage the speed of model inference. Extensive experiments demonstrate that the proposed method can achieve competitive performance and 8.7 times inference speed improvement in the meantime.
Abstract:Nowadays, graph-structured data are increasingly used to model complex systems. Meanwhile, detecting anomalies from graph has become a vital research problem of pressing societal concerns. Anomaly detection is an unsupervised learning task of identifying rare data that differ from the majority. As one of the dominant anomaly detection algorithms, One Class Support Vector Machine has been widely used to detect outliers. However, those traditional anomaly detection methods lost their effectiveness in graph data. Since traditional anomaly detection methods are stable, robust and easy to use, it is vitally important to generalize them to graph data. In this work, we propose One Class Graph Neural Network (OCGNN), a one-class classification framework for graph anomaly detection. OCGNN is designed to combine the powerful representation ability of Graph Neural Networks along with the classical one-class objective. Compared with other baselines, OCGNN achieves significant improvements in extensive experiments.
Abstract:Recently, deep generative models have become increasingly popular in unsupervised anomaly detection. However, deep generative models aim at recovering the data distribution rather than detecting anomalies. Besides, deep generative models have the risk of overfitting training samples, which has disastrous effects on anomaly detection performance. To solve the above two problems, we propose a Self-adversarial Variational Autoencoder with a Gaussian anomaly prior assumption. We assume that both the anomalous and the normal prior distribution are Gaussian and have overlaps in the latent space. Therefore, a Gaussian transformer net T is trained to synthesize anomalous but near-normal latent variables. Keeping the original training objective of Variational Autoencoder, besides, the generator G tries to distinguish between the normal latent variables and the anomalous ones synthesized by T, and the encoder E is trained to discriminate whether the output of G is real. These new objectives we added not only give both G and E the ability to discriminate but also introduce additional regularization to prevent overfitting. Compared with the SOTA baselines, the proposed model achieves significant improvements in extensive experiments. Datasets and our model are available at a Github repository.