Abstract:Large Language Models (LLMs) are widely used in complex natural language processing tasks but raise privacy and security concerns due to the lack of identity recognition. This paper proposes a multi-party credible watermarking framework (CredID) involving a trusted third party (TTP) and multiple LLM vendors to address these issues. In the watermark embedding stage, vendors request a seed from the TTP to generate watermarked text without sending the user's prompt. In the extraction stage, the TTP coordinates each vendor to extract and verify the watermark from the text. This provides a credible watermarking scheme while preserving vendor privacy. Furthermore, current watermarking algorithms struggle with text quality, information capacity, and robustness, making it challenging to meet the diverse identification needs of LLMs. Thus, we propose a novel multi-bit watermarking algorithm and an open-source toolkit to facilitate research. Experiments show our CredID enhances watermark credibility and efficiency without compromising text quality. Additionally, we successfully utilized this framework to achieve highly accurate identification among multiple LLM vendors.
Abstract:Large Large Language Models (LLMs) are increasingly integrated into diverse industries, posing substantial security risks due to unauthorized replication and misuse. To mitigate these concerns, robust identification mechanisms are widely acknowledged as an effective strategy. Identification systems for LLMs now rely heavily on watermarking technology to manage and protect intellectual property and ensure data security. However, previous studies have primarily concentrated on the basic principles of algorithms and lacked a comprehensive analysis of watermarking theory and practice from the perspective of intelligent identification. To bridge this gap, firstly, we explore how a robust identity recognition system can be effectively implemented and managed within LLMs by various participants using watermarking technology. Secondly, we propose a mathematical framework based on mutual information theory, which systematizes the identification process to achieve more precise and customized watermarking. Additionally, we present a comprehensive evaluation of performance metrics for LLM watermarking, reflecting participant preferences and advancing discussions on its identification applications. Lastly, we outline the existing challenges in current watermarking technologies and theoretical frameworks, and provide directional guidance to address these challenges. Our systematic classification and detailed exposition aim to enhance the comparison and evaluation of various methods, fostering further research and development toward a transparent, secure, and equitable LLM ecosystem.
Abstract:With a growing complexity of the intelligent traffic system (ITS), an integrated control of ITS that is capable of considering plentiful heterogeneous intelligent agents is desired. However, existing control methods based on the centralized or the decentralized scheme have not presented their competencies in considering the optimality and the scalability simultaneously. To address this issue, we propose an integrated control method based on the framework of Decentralized Autonomous Organization (DAO). The proposed method achieves a global consensus on energy consumption efficiency (ECE), meanwhile to optimize the local objectives of all involved intelligent agents, through a consensus and incentive mechanism. Furthermore, an operation algorithm is proposed regarding the issue of structural rigidity in DAO. Specifically, the proposed operation approach identifies critical agents to execute the smart contract in DAO, which ultimately extends the capability of DAO-based control. In addition, a numerical experiment is designed to examine the performance of the proposed method. The experiment results indicate that the controlled agents can achieve a consensus faster on the global objective with improved local objectives by the proposed method, compare to existing decentralized control methods. In general, the proposed method shows a great potential in developing an integrated control system in the ITS
Abstract:In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.
Abstract:Traffic simulation is a crucial tool for transportation decision-making and policy development. However, achieving realistic simulations in the face of the high dimensionality and heterogeneity of traffic environments is a longstanding challenge. In this paper, we present TransWordNG, a traffic simulator that uses Data-driven algorithms and Graph Computing techniques to learn traffic dynamics from real data. The functionality and structure of TransWorldNG are introduced, which utilize a foundation model for transportation management and control. The results demonstrate that TransWorldNG can generate more realistic traffic patterns compared to traditional simulators. Additionally, TransWorldNG exhibits better scalability, as it shows linear growth in computation time as the scenario scale increases. To the best of our knowledge, this is the first traffic simulator that can automatically learn traffic patterns from real-world data and efficiently generate accurate and realistic traffic environments.
Abstract:Efficient traffic management is crucial for maintaining urban mobility, especially in densely populated areas where congestion, accidents, and delays can lead to frustrating and expensive commutes. However, existing prediction methods face challenges in terms of optimizing a single objective and understanding the complex composition of the transportation system. Moreover, they lack the ability to understand the macroscopic system and cannot efficiently utilize big data. In this paper, we propose a novel approach, Transportation Foundation Model (TFM), which integrates the principles of traffic simulation into traffic prediction. TFM uses graph structures and dynamic graph generation algorithms to capture the participatory behavior and interaction of transportation system actors. This data-driven and model-free simulation method addresses the challenges faced by traditional systems in terms of structural complexity and model accuracy and provides a foundation for solving complex transportation problems with real data. The proposed approach shows promising results in accurately predicting traffic outcomes in an urban transportation setting.
Abstract:Federated learning (FL) has attracted increasing attention in recent years. As a privacy-preserving collaborative learning paradigm, it enables a broader range of applications, especially for computer vision and natural language processing tasks. However, to date, there is limited research of federated learning on relational data, namely Knowledge Graph (KG). In this work, we present a modified version of the graph neural network algorithm that performs federated modeling over KGs across different participants. Specifically, to tackle the inherent data heterogeneity issue and inefficiency in algorithm convergence, we propose a novel optimization algorithm, named FedAlign, with 1) optimal transportation (OT) for on-client personalization and 2) weight constraint to speed up the convergence. Extensive experiments have been conducted on several widely used datasets. Empirical results show that our proposed method outperforms the state-of-the-art FL methods, such as FedAVG and FedProx, with better convergence.
Abstract:Initialization is essential to monocular Simultaneous Localization and Mapping (SLAM) problems. This paper focuses on a novel initialization method for monocular SLAM based on planar features. The algorithm starts by homography estimation in a sliding window. It then proceeds to a global plane optimization (GPO) to obtain camera poses and the plane normal. 3D points can be recovered using planar constraints without triangulation. The proposed method fully exploits the plane information from multiple frames and avoids the ambiguities in homography decomposition. We validate our algorithm on the collected chessboard dataset against baseline implementations and present extensive analysis. Experimental results show that our method outperforms the fine-tuned baselines in both accuracy and real-time.
Abstract:Urban Traffic Control (UTC) plays an essential role in Intelligent Transportation System (ITS) but remains difficult. Since model-based UTC methods may not accurately describe the complex nature of traffic dynamics in all situations, model-free data-driven UTC methods, especially reinforcement learning (RL) based UTC methods, received increasing interests in the last decade. However, existing DL approaches did not propose an efficient algorithm to solve the complicated multiple intersections control problems whose state-action spaces are vast. To solve this problem, we propose a Deep Reinforcement Learning (DRL) algorithm that combines several tricks to master an appropriate control strategy within an acceptable time. This new algorithm relaxes the fixed traffic demand pattern assumption and reduces human invention in parameter tuning. Simulation experiments have shown that our method outperforms traditional rule-based approaches and has the potential to handle more complex traffic problems in the real world.
Abstract:In this paper, we consider the temporal pattern in traffic flow time series, and implement a deep learning model for traffic flow prediction. Detrending based methods decompose original flow series into trend and residual series, in which trend describes the fixed temporal pattern in traffic flow and residual series is used for prediction. Inspired by the detrending method, we propose DeepTrend, a deep hierarchical neural network used for traffic flow prediction which considers and extracts the time-variant trend. DeepTrend has two stacked layers: extraction layer and prediction layer. Extraction layer, a fully connected layer, is used to extract the time-variant trend in traffic flow by feeding the original flow series concatenated with corresponding simple average trend series. Prediction layer, an LSTM layer, is used to make flow prediction by feeding the obtained trend from the output of extraction layer and calculated residual series. To make the model more effective, DeepTrend needs first pre-trained layer-by-layer and then fine-tuned in the entire network. Experiments show that DeepTrend can noticeably boost the prediction performance compared with some traditional prediction models and LSTM with detrending based methods.