Abstract:Diagnosing rare diseases presents a common challenge in clinical practice, necessitating the expertise of specialists for accurate identification. The advent of machine learning offers a promising solution, while the development of such technologies is hindered by the scarcity of data on rare conditions and the demand for models that are both interpretable and trustworthy in a clinical context. Interpretable AI, with its capacity for human-readable outputs, can facilitate validation by clinicians and contribute to medical education. In the current work, we focus on choroid neoplasias, the most prevalent form of eye cancer in adults, albeit rare with 5.1 per million. We built the so-far largest dataset consisting of 750 patients, incorporating three distinct imaging modalities collected from 2004 to 2022. Our work introduces a concept-based interpretable model that distinguishes between three types of choroidal tumors, integrating insights from domain experts via radiological reports. Remarkably, this model not only achieves an F1 score of 0.91, rivaling that of black-box models, but also boosts the diagnostic accuracy of junior doctors by 42%. This study highlights the significant potential of interpretable machine learning in improving the diagnosis of rare diseases, laying a groundwork for future breakthroughs in medical AI that could tackle a wider array of complex health scenarios.
Abstract:Over the past two decades, PKAW has provided a forum for researchers and practitioners to discuss the state-of-the-arts in the area of knowledge acquisition and machine intelligence (MI, also Artificial Intelligence, AI). PKAW2022 will continue the above focus and welcome the contributions on the multi-disciplinary approach of human and big data-driven knowledge acquisition, as well as AI techniques and applications.
Abstract:Convolutional neural network (CNN) models have seen advanced improvements in performance in various domains, but lack of interpretability is a major barrier to assurance and regulation during operation for acceptance and deployment of AI-assisted applications. There have been many works on input interpretability focusing on analyzing the input-output relations, but the internal logic of models has not been clarified in the current mainstream interpretability methods. In this study, we propose a novel hybrid CNN-interpreter through: (1) An original forward propagation mechanism to examine the layer-specific prediction results for local interpretability. (2) A new global interpretability that indicates the feature correlation and filter importance effects. By combining the local and global interpretabilities, hybrid CNN-interpreter enables us to have a solid understanding and monitoring of model context during the whole learning process with detailed and consistent representations. Finally, the proposed interpretabilities have been demonstrated to adapt to various CNN-based model structures.
Abstract:Deep supervision, or known as 'intermediate supervision' or 'auxiliary supervision', is to add supervision at hidden layers of a neural network. This technique has been increasingly applied in deep neural network learning systems for various computer vision applications recently. There is a consensus that deep supervision helps improve neural network performance by alleviating the gradient vanishing problem, as one of the many strengths of deep supervision. Besides, in different computer vision applications, deep supervision can be applied in different ways. How to make the most use of deep supervision to improve network performance in different applications has not been thoroughly investigated. In this paper, we provide a comprehensive in-depth review of deep supervision in both theories and applications. We propose a new classification of different deep supervision networks, and discuss advantages and limitations of current deep supervision networks in computer vision applications.