Abstract:Drug discovery remains a formidable challenge: more than 90 percent of candidate molecules fail in clinical evaluation, and development costs often exceed one billion dollars per approved therapy. Disparate data streams, from genomics and transcriptomics to chemical libraries and clinical records, hinder coherent mechanistic insight and slow progress. Meanwhile, large language models excel at reasoning and tool integration but lack the modular specialization and iterative memory required for regulated, hypothesis-driven workflows. We introduce PharmaSwarm, a unified multi-agent framework that orchestrates specialized LLM "agents" to propose, validate, and refine hypotheses for novel drug targets and lead compounds. Each agent accesses dedicated functionality--automated genomic and expression analysis; a curated biomedical knowledge graph; pathway enrichment and network simulation; interpretable binding affinity prediction--while a central Evaluator LLM continuously ranks proposals by biological plausibility, novelty, in silico efficacy, and safety. A shared memory layer captures validated insights and fine-tunes underlying submodels over time, yielding a self-improving system. Deployable on low-code platforms or Kubernetes-based microservices, PharmaSwarm supports literature-driven discovery, omics-guided target identification, and market-informed repurposing. We also describe a rigorous four-tier validation pipeline spanning retrospective benchmarking, independent computational assays, experimental testing, and expert user studies to ensure transparency, reproducibility, and real-world impact. By acting as an AI copilot, PharmaSwarm can accelerate translational research and deliver high-confidence hypotheses more efficiently than traditional pipelines.
Abstract:Phenotype segmentation is pivotal in analysing visual features of living organisms, enhancing our understanding of their characteristics. In the context of oysters, meat quality assessment is paramount, focusing on shell, meat, gonad, and muscle components. Traditional manual inspection methods are time-consuming and subjective, prompting the adoption of machine vision technology for efficient and objective evaluation. We explore machine vision's capacity for segmenting oyster components, leading to the development of a multi-network ensemble approach with a global-local hierarchical attention mechanism. This approach integrates predictions from diverse models and addresses challenges posed by varying scales, ensuring robust instance segmentation across components. Finally, we provide a comprehensive evaluation of the proposed method's performance using different real-world datasets, highlighting its efficacy and robustness in enhancing oyster phenotype segmentation.