Abstract:Large Language Models (LLMs) demonstrate exceptional capabilities in various scenarios. However, they suffer from much redundant information and tend to be lost in the middle in long context scenarios, leading to inferior performance. To address these challenges, we present Perception Compressor, a training-free prompt compression method. It includes a dual-slope ratio allocator to dynamically assign compression ratios and open-book ratios, a perception retriever that leverages guiding questions and instruction to retrieve the most relevant demonstrations, and a semi-guided iterative compression that retains key information at the token level while removing tokens that distract the LLM. We conduct extensive experiments on long context benchmarks, i.e., NaturalQuestions, LongBench, and MuSiQue. Experiment results show that Perception Compressor outperforms existing methods by a large margin, achieving state-of-the-art performance.
Abstract:Entity Set Expansion (ESE) aims to identify new entities belonging to the same semantic class as a given set of seed entities. Traditional methods primarily relied on positive seed entities to represent a target semantic class, which poses challenge for the representation of ultra-fine-grained semantic classes. Ultra-fine-grained semantic classes are defined based on fine-grained semantic classes with more specific attribute constraints. Describing it with positive seed entities alone cause two issues: (i) Ambiguity among ultra-fine-grained semantic classes. (ii) Inability to define "unwanted" semantic. Due to these inherent shortcomings, previous methods struggle to address the ultra-fine-grained ESE (Ultra-ESE). To solve this issue, we first introduce negative seed entities in the inputs, which belong to the same fine-grained semantic class as the positive seed entities but differ in certain attributes. Negative seed entities eliminate the semantic ambiguity by contrast between positive and negative attributes. Meanwhile, it provide a straightforward way to express "unwanted". To assess model performance in Ultra-ESE, we constructed UltraWiki, the first large-scale dataset tailored for Ultra-ESE. UltraWiki encompasses 236 ultra-fine-grained semantic classes, where each query of them is represented with 3-5 positive and negative seed entities. A retrieval-based framework RetExpan and a generation-based framework GenExpan are proposed to comprehensively assess the efficacy of large language models from two different paradigms in Ultra-ESE. Moreover, we devised three strategies to enhance models' comprehension of ultra-fine-grained entities semantics: contrastive learning, retrieval augmentation, and chain-of-thought reasoning. Extensive experiments confirm the effectiveness of our proposed strategies and also reveal that there remains a large space for improvement in Ultra-ESE.
Abstract:The Entity Set Expansion (ESE) task aims to expand a handful of seed entities with new entities belonging to the same semantic class. Conventional ESE methods are based on mono-modality (i.e., literal modality), which struggle to deal with complex entities in the real world such as: (1) Negative entities with fine-grained semantic differences. (2) Synonymous entities. (3) Polysemous entities. (4) Long-tailed entities. These challenges prompt us to propose Multi-modal Entity Set Expansion (MESE), where models integrate information from multiple modalities to represent entities. Intuitively, the benefits of multi-modal information for ESE are threefold: (1) Different modalities can provide complementary information. (2) Multi-modal information provides a unified signal via common visual properties for the same semantic class or entity. (3) Multi-modal information offers robust alignment signal for synonymous entities. To assess the performance of model in MESE and facilitate further research, we constructed the MESED dataset which is the first multi-modal dataset for ESE with large-scale and elaborate manual calibration. A powerful multi-modal model MultiExpan is proposed which is pre-trained on four multimodal pre-training tasks. The extensive experiments and analyses on MESED demonstrate the high quality of the dataset and the effectiveness of our MultiExpan, as well as pointing the direction for future research.