Abstract:Model merging enables efficient multi-task models by combining task-specific fine-tuned checkpoints. However, storing multiple task-specific checkpoints requires significant memory, limiting scalability and restricting model merging to larger models and diverse tasks. In this paper, we propose quantizing task vectors (i.e., the difference between pre-trained and fine-tuned checkpoints) instead of quantizing fine-tuned checkpoints. We observe that task vectors exhibit a narrow weight range, enabling low precision quantization (up to 4 bit) within existing task vector merging frameworks. To further mitigate quantization errors within ultra-low bit precision (e.g., 2 bit), we introduce Residual Task Vector Quantization, which decomposes the task vector into a base vector and offset component. We allocate bits based on quantization sensitivity, ensuring precision while minimizing error within a memory budget. Experiments on image classification and dense prediction show our method maintains or improves model merging performance while using only 8% of the memory required for full-precision checkpoints.
Abstract:Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes QA-TIGER, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://aim-skku.github.io/QA-TIGER/
Abstract:Image segmentation is a vital task for providing human assistance and enhancing autonomy in our daily lives. In particular, RGB-D segmentation-leveraging both visual and depth cues-has attracted increasing attention as it promises richer scene understanding than RGB-only methods. However, most existing efforts have primarily focused on semantic segmentation and thus leave a critical gap. There is a relative scarcity of instance-level RGB-D segmentation datasets, which restricts current methods to broad category distinctions rather than fully capturing the fine-grained details required for recognizing individual objects. To bridge this gap, we introduce three RGB-D instance segmentation benchmarks, distinguished at the instance level. These datasets are versatile, supporting a wide range of applications from indoor navigation to robotic manipulation. In addition, we present an extensive evaluation of various baseline models on these benchmarks. This comprehensive analysis identifies both their strengths and shortcomings, guiding future work toward more robust, generalizable solutions. Finally, we propose a simple yet effective method for RGB-D data integration. Extensive evaluations affirm the effectiveness of our approach, offering a robust framework for advancing toward more nuanced scene understanding.
Abstract:Traditional model merging methods for multi-task learning (MTL) address task conflicts with straightforward strategies such as weight averaging, sign consensus, or minimal test-time adjustments. This presumably counts on the assumption that a merged encoder still retains abundant task knowledge from individual encoders, implying that its shared representation is sufficiently general across tasks. However, our insight is that adding just a single trainable task-specific layer further can bring striking performance gains, as demonstrated by our pilot study. Motivated by this finding, we propose Model Tinting, a new test-time approach that introduces a single task-specific layer for each task as trainable adjustments. Our method jointly trains merging coefficients and task-specific layers, which effectively reduces task conflicts with minimal additional costs. Additionally, we propose a sampling method that utilizes the difference in confidence levels of both merged and individual encoders. Extensive experiments demonstrate our method's effectiveness, which achieves state-of-the-art performance across both computer vision and natural language processing tasks and significantly surpasses prior works. Our code is available at https://github.com/AIM-SKKU/ModelTinting.
Abstract:Human motion, inherently continuous and dynamic, presents significant challenges for generative models. Despite their dominance, discrete quantization methods, such as VQ-VAEs, suffer from inherent limitations, including restricted expressiveness and frame-wise noise artifacts. Continuous approaches, while producing smoother and more natural motions, often falter due to high-dimensional complexity and limited training data. To resolve this "discord" between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that decodes discrete motion tokens into continuous motion through rectified flow. By employing an iterative refinement process in the continuous space, DisCoRD captures fine-grained dynamics and ensures smoother and more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals. Extensive evaluations demonstrate that DisCoRD achieves state-of-the-art performance, with FID of 0.032 on HumanML3D and 0.169 on KIT-ML. These results solidify DisCoRD as a robust solution for bridging the divide between discrete efficiency and continuous realism. Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
Abstract:Existing face restoration models have relied on general assessment metrics that do not consider the characteristics of facial regions. Recent works have therefore assessed their methods using human studies, which is not scalable and involves significant effort. This paper proposes a novel face-centric metric based on an adversarial framework where a generator simulates face restoration and a discriminator assesses image quality. Specifically, our per-pixel discriminator enables interpretable evaluation that cannot be provided by traditional metrics. Moreover, our metric emphasizes facial primary regions considering that even minor changes to the eyes, nose, and mouth significantly affect human cognition. Our face-oriented metric consistently surpasses existing general or facial image quality assessment metrics by impressive margins. We demonstrate the generalizability of the proposed strategy in various architectural designs and challenging scenarios. Interestingly, we find that our IFQA can lead to performance improvement as an objective function.
Abstract:Crowd counting research has made significant advancements in real-world applications, but it remains a formidable challenge in cross-modal settings. Most existing methods rely solely on the optical features of RGB images, ignoring the feasibility of other modalities such as thermal and depth images. The inherently significant differences between the different modalities and the diversity of design choices for model architectures make cross-modal crowd counting more challenging. In this paper, we propose Cross-modal Spatio-Channel Attention (CSCA) blocks, which can be easily integrated into any modality-specific architecture. The CSCA blocks first spatially capture global functional correlations among multi-modality with less overhead through spatial-wise cross-modal attention. Cross-modal features with spatial attention are subsequently refined through adaptive channel-wise feature aggregation. In our experiments, the proposed block consistently shows significant performance improvement across various backbone networks, resulting in state-of-the-art results in RGB-T and RGB-D crowd counting.
Abstract:Active domain adaptation (ADA) studies have mainly addressed query selection while following existing domain adaptation strategies. However, we argue that it is critical to consider not only query selection criteria but also domain adaptation strategies designed for ADA scenarios. This paper introduces sequential learning considering both domain type (source/target) or labelness (labeled/unlabeled). We first train our model only on labeled target samples obtained by loss-based query selection. When loss-based query selection is applied under domain shift, unuseful high-loss samples gradually increase, and the labeled-sample diversity becomes low. To solve these, we fully utilize pseudo labels of the unlabeled target domain by leveraging loss prediction. We further encourage pseudo labels to have low self-entropy and diverse class distributions. Our model significantly outperforms previous methods as well as baseline models in various benchmark datasets.
Abstract:Partial Adaptation (PDA) addresses a practical scenario in which the target domain contains only a subset of classes in the source domain. While PDA should take into account both class-level and sample-level to mitigate negative transfer, current approaches mostly rely on only one of them. In this paper, we propose a novel approach to fully exploit multi-level associations that can arise in PDA. Our Associative Partial Domain Adaptation (APDA) utilizes intra-domain association to actively select out non-trivial anomaly samples in each source-private class that sample-level weighting cannot handle. Additionally, our method considers inter-domain association to encourage positive transfer by mapping between nearby target samples and source samples with high label-commonness. For this, we exploit feature propagation in a proposed label space consisting of source ground-truth labels and target probabilistic labels. We further propose a geometric guidance loss based on the label commonness of each source class to encourage positive transfer. Our APDA consistently achieves state-of-the-art performance across public datasets.
Abstract:Domain adaptation assumes that samples from source and target domains are freely accessible during a training phase. However, such an assumption is rarely plausible in real cases and possibly causes data-privacy issues, especially when the label of the source domain can be a sensitive attribute as an identifier. To avoid accessing source data which may contain sensitive information, we introduce source data-free domain adaptation (SFDA). Our key idea is to leverage a pre-trained model from the source domain and progressively update the target model in a self-learning manner. We observe that target samples with lower self-entropy measured by the pre-trained source model are more likely to be classified correctly. From this, we select the reliable samples with the self-entropy criterion and define these as class prototypes. We then assign pseudo labels for every target sample based on the similarity score with class prototypes. Further, to reduce the uncertainty from the pseudo labeling process, we propose set-to-set distance-based filtering which does not require any tunable hyperparameters. Finally, we train the target model with the filtered pseudo labels with regularization from the pre-trained source model. Surprisingly, without direct usage of labeled source samples, our SFDA outperforms conventional domain adaptation methods on benchmark datasets. Our code is publicly available at https://github.com/youngryan1993/SFDA-Domain-Adaptation-without-Source-Data.