Abstract:Gait recognition, a rapidly advancing vision technology for person identification from a distance, has made significant strides in indoor settings. However, evidence suggests that existing methods often yield unsatisfactory results when applied to newly released real-world gait datasets. Furthermore, conclusions drawn from indoor gait datasets may not easily generalize to outdoor ones. Therefore, the primary goal of this work is to present a comprehensive benchmark study aimed at improving practicality rather than solely focusing on enhancing performance. To this end, we first develop OpenGait, a flexible and efficient gait recognition platform. Using OpenGait as a foundation, we conduct in-depth ablation experiments to revisit recent developments in gait recognition. Surprisingly, we detect some imperfect parts of certain prior methods thereby resulting in several critical yet undiscovered insights. Inspired by these findings, we develop three structurally simple yet empirically powerful and practically robust baseline models, i.e., DeepGaitV2, SkeletonGait, and SkeletonGait++, respectively representing the appearance-based, model-based, and multi-modal methodology for gait pattern description. Beyond achieving SoTA performances, more importantly, our careful exploration sheds new light on the modeling experience of deep gait models, the representational capacity of typical gait modalities, and so on. We hope this work can inspire further research and application of gait recognition towards better practicality. The code is available at https://github.com/ShiqiYu/OpenGait.
Abstract:Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D Human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3D pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modeling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints.
Abstract:Gait recognition is a promising biometric method that aims to identify pedestrians from their unique walking patterns. Silhouette modality, renowned for its easy acquisition, simple structure, sparse representation, and convenient modeling, has been widely employed in controlled in-the-lab research. However, as gait recognition rapidly advances from in-the-lab to in-the-wild scenarios, various conditions raise significant challenges for silhouette modality, including 1) unidentifiable low-quality silhouettes (abnormal segmentation, severe occlusion, or even non-human shape), and 2) identifiable but challenging silhouettes (background noise, non-standard posture, slight occlusion). To address these challenges, we revisit gait recognition pipeline and approach gait recognition from a quality perspective, namely QAGait. Specifically, we propose a series of cost-effective quality assessment strategies, including Maxmial Connect Area and Template Match to eliminate background noises and unidentifiable silhouettes, Alignment strategy to handle non-standard postures. We also propose two quality-aware loss functions to integrate silhouette quality into optimization within the embedding space. Extensive experiments demonstrate our QAGait can guarantee both gait reliability and performance enhancement. Furthermore, our quality assessment strategies can seamlessly integrate with existing gait datasets, showcasing our superiority. Code is available at https://github.com/wzb-bupt/QAGait.
Abstract:We present FastPoseGait, an open-source toolbox for pose-based gait recognition based on PyTorch. Our toolbox supports a set of cutting-edge pose-based gait recognition algorithms and a variety of related benchmarks. Unlike other pose-based projects that focus on a single algorithm, FastPoseGait integrates several state-of-the-art (SOTA) algorithms under a unified framework, incorporating both the latest advancements and best practices to ease the comparison of effectiveness and efficiency. In addition, to promote future research on pose-based gait recognition, we provide numerous pre-trained models and detailed benchmark results, which offer valuable insights and serve as a reference for further investigations. By leveraging the highly modular structure and diverse methods offered by FastPoseGait, researchers can quickly delve into pose-based gait recognition and promote development in the field. In this paper, we outline various features of this toolbox, aiming that our toolbox and benchmarks can further foster collaboration, facilitate reproducibility, and encourage the development of innovative algorithms for pose-based gait recognition. FastPoseGait is available at https://github.com//BNU-IVC/FastPoseGait and is actively maintained. We will continue updating this report as we add new features.
Abstract:Gait recognition is to seek correct matches for query individuals by their unique walking patterns. However, current methods focus solely on extracting individual-specific features, overlooking inter-personal relationships. In this paper, we propose a novel $\textbf{Relation Descriptor}$ that captures not only individual features but also relations between test gaits and pre-selected anchored gaits. Specifically, we reinterpret classifier weights as anchored gaits and compute similarity scores between test features and these anchors, which re-expresses individual gait features into a similarity relation distribution. In essence, the relation descriptor offers a holistic perspective that leverages the collective knowledge stored within the classifier's weights, emphasizing meaningful patterns and enhancing robustness. Despite its potential, relation descriptor poses dimensionality challenges since its dimension depends on the training set's identity count. To address this, we propose the Farthest Anchored-gait Selection to identify the most discriminative anchored gaits and an Orthogonal Regularization to increase diversity within anchored gaits. Compared to individual-specific features extracted from the backbone, our relation descriptor can boost the performances nearly without any extra costs. We evaluate the effectiveness of our method on the popular GREW, Gait3D, CASIA-B, and OU-MVLP, showing that our method consistently outperforms the baselines and achieves state-of-the-art performances.
Abstract:Previous gait recognition methods primarily trained on labeled datasets, which require painful labeling effort. However, using a pre-trained model on a new dataset without fine-tuning can lead to significant performance degradation. So to make the pre-trained gait recognition model able to be fine-tuned on unlabeled datasets, we propose a new task: Unsupervised Gait Recognition (UGR). We introduce a new cluster-based baseline to solve UGR with cluster-level contrastive learning. But we further find more challenges this task meets. First, sequences of the same person in different clothes tend to cluster separately due to the significant appearance changes. Second, sequences taken from 0 and 180 views lack walking postures and do not cluster with sequences taken from other views. To address these challenges, we propose a Selective Fusion method, which includes Selective Cluster Fusion (SCF) and Selective Sample Fusion (SSF). With SCF, we merge matched clusters of the same person wearing different clothes by updating the cluster-level memory bank with a multi-cluster update strategy. And in SSF, we merge sequences taken from front/back views gradually with curriculum learning. Extensive experiments show the effectiveness of our method in improving the rank-1 accuracy in walking with different coats condition and front/back views conditions.
Abstract:Gait recognition is a rapidly advancing vision technique for person identification from a distance. Prior studies predominantly employed relatively small and shallow neural networks to extract subtle gait features, achieving impressive successes in indoor settings. Nevertheless, experiments revealed that these existing methods mostly produce unsatisfactory results when applied to newly released in-the-wild gait datasets. This paper presents a unified perspective to explore how to construct deep models for state-of-the-art outdoor gait recognition, including the classical CNN-based and emerging Transformer-based architectures. Consequently, we emphasize the importance of suitable network capacity, explicit temporal modeling, and deep transformer structure for discriminative gait representation learning. Our proposed CNN-based DeepGaitV2 series and Transformer-based SwinGait series exhibit significant performance gains in outdoor scenarios, \textit{e.g.}, about +30\% rank-1 accuracy compared with many state-of-the-art methods on the challenging GREW dataset. This work is expected to further boost the research and application of gait recognition. Code will be available at https://github.com/ShiqiYu/OpenGait.
Abstract:Recent works on pose-based gait recognition have demonstrated the potential of using such simple information to achieve results comparable to silhouette-based methods. However, the generalization ability of pose-based methods on different datasets is undesirably inferior to that of silhouette-based ones, which has received little attention but hinders the application of these methods in real-world scenarios. To improve the generalization ability of pose-based methods across datasets, we propose a Generalized Pose-based Gait recognition (GPGait) framework. First, a Human-Oriented Transformation (HOT) and a series of Human-Oriented Descriptors (HOD) are proposed to obtain a unified pose representation with discriminative multi-features. Then, given the slight variations in the unified representation after HOT and HOD, it becomes crucial for the network to extract local-global relationships between the keypoints. To this end, a Part-Aware Graph Convolutional Network (PAGCN) is proposed to enable efficient graph partition and local-global spatial feature extraction. Experiments on four public gait recognition datasets, CASIA-B, OUMVLP-Pose, Gait3D and GREW, show that our model demonstrates better and more stable cross-domain capabilities compared to existing skeleton-based methods, achieving comparable recognition results to silhouette-based ones. The code will be released.
Abstract:Gait recognition is one of the most important long-distance identification technologies and increasingly gains popularity in both research and industry communities. Although significant progress has been made in indoor datasets, much evidence shows that gait recognition techniques perform poorly in the wild. More importantly, we also find that many conclusions from prior works change with the evaluation datasets. Therefore, the more critical goal of this paper is to present a comprehensive benchmark study for better practicality rather than only a particular model for better performance. To this end, we first develop a flexible and efficient gait recognition codebase named OpenGait. Based on OpenGait, we deeply revisit the recent development of gait recognition by re-conducting the ablative experiments. Encouragingly, we find many hidden troubles of prior works and new insights for future research. Inspired by these discoveries, we develop a structurally simple, empirically powerful and practically robust baseline model, GaitBase. Experimentally, we comprehensively compare GaitBase with many current gait recognition methods on multiple public datasets, and the results reflect that GaitBase achieves significantly strong performance in most cases regardless of indoor or outdoor situations. The source code is available at \url{https://github.com/ShiqiYu/OpenGait}.
Abstract:Occluded person re-identification (Re-ID) aims at addressing the occlusion problem when retrieving the person of interest across multiple cameras. With the promotion of deep learning technology and the increasing demand for intelligent video surveillance, the frequent occlusion in real-world applications has made occluded person Re-ID draw considerable interest from researchers. A large number of occluded person Re-ID methods have been proposed while there are few surveys that focus on occlusion. To fill this gap and help boost future research, this paper provides a systematic survey of occluded person Re-ID. Through an in-depth analysis of the occlusion in person Re-ID, most existing methods are found to only consider part of the problems brought by occlusion. Therefore, we review occlusion-related person Re-ID methods from the perspective of issues and solutions. We summarize four issues caused by occlusion in person Re-ID, i.e., position misalignment, scale misalignment, noisy information, and missing information. The occlusion-related methods addressing different issues are then categorized and introduced accordingly. After that, we summarize and compare the performance of recent occluded person Re-ID methods on four popular datasets: Partial-ReID, Partial-iLIDS, Occluded-ReID, and Occluded-DukeMTMC. Finally, we provide insights on promising future research directions.