Abstract:Medical Vision-Language Pre-training (MedVLP) has made significant progress in enabling zero-shot tasks for medical image understanding. However, training MedVLP models typically requires large-scale datasets with paired, high-quality image-text data, which are scarce in the medical domain. Recent advancements in Large Language Models (LLMs) and diffusion models have made it possible to generate large-scale synthetic image-text pairs. This raises the question: *Can MedVLP succeed using purely synthetic data?* To address this, we use off-the-shelf generative models to create synthetic radiology reports and paired Chest X-ray (CXR) images, and propose an automated pipeline to build a diverse, high-quality synthetic dataset, enabling a rigorous study that isolates model and training settings, focusing entirely from the data perspective. Our results show that MedVLP models trained *exclusively on synthetic data* outperform those trained on real data by **3.8%** in averaged AUC on zero-shot classification. Moreover, using a combination of synthetic and real data leads to a further improvement of **9.07%**. Additionally, MedVLP models trained on synthetic or mixed data consistently outperform those trained on real data in zero-shot grounding, as well as in fine-tuned classification and segmentation tasks. Our analysis suggests MedVLP trained on well-designed synthetic data can outperform models trained on real datasets, which may be limited by low-quality samples and long-tailed distributions.
Abstract:Advancements in Multimodal Large Language Models (MLLMs) have significantly improved medical task performance, such as Visual Question Answering (VQA) and Report Generation (RG). However, the fairness of these models across diverse demographic groups remains underexplored, despite its importance in healthcare. This oversight is partly due to the lack of demographic diversity in existing medical multimodal datasets, which complicates the evaluation of fairness. In response, we propose FMBench, the first benchmark designed to evaluate the fairness of MLLMs performance across diverse demographic attributes. FMBench has the following key features: 1: It includes four demographic attributes: race, ethnicity, language, and gender, across two tasks, VQA and RG, under zero-shot settings. 2: Our VQA task is free-form, enhancing real-world applicability and mitigating the biases associated with predefined choices. 3: We utilize both lexical metrics and LLM-based metrics, aligned with clinical evaluations, to assess models not only for linguistic accuracy but also from a clinical perspective. Furthermore, we introduce a new metric, Fairness-Aware Performance (FAP), to evaluate how fairly MLLMs perform across various demographic attributes. We thoroughly evaluate the performance and fairness of eight state-of-the-art open-source MLLMs, including both general and medical MLLMs, ranging from 7B to 26B parameters on the proposed benchmark. We aim for FMBench to assist the research community in refining model evaluation and driving future advancements in the field. All data and code will be released upon acceptance.
Abstract:Recent advancements in medical vision-language pre-training (MedVLP) have significantly enhanced zero-shot medical vision tasks such as image classification by leveraging large-scale medical image-text pair pre-training. However, the performance of these tasks can be heavily influenced by the variability in textual prompts describing the categories, necessitating robustness in MedVLP models to diverse prompt styles. Yet, this sensitivity remains underexplored. In this work, we are the first to systematically assess the sensitivity of three widely-used MedVLP methods to a variety of prompts across 15 different diseases. To achieve this, we designed six unique prompt styles to mirror real clinical scenarios, which were subsequently ranked by interpretability. Our findings indicate that all MedVLP models evaluated show unstable performance across different prompt styles, suggesting a lack of robustness. Additionally, the models' performance varied with increasing prompt interpretability, revealing difficulties in comprehending complex medical concepts. This study underscores the need for further development in MedVLP methodologies to enhance their robustness to diverse zero-shot prompts.
Abstract:Global wildfire models play a crucial role in anticipating and responding to changing wildfire regimes. JULES-INFERNO is a global vegetation and fire model simulating wildfire emissions and area burnt on a global scale. However, because of the high data dimensionality and system complexity, JULES-INFERNO's computational costs make it challenging to apply to fire risk forecasting with unseen initial conditions. Typically, running JULES-INFERNO for 30 years of prediction will take several hours on High Performance Computing (HPC) clusters. To tackle this bottleneck, two data-driven models are built in this work based on Deep Learning techniques to surrogate the JULES-INFERNO model and speed up global wildfire forecasting. More precisely, these machine learning models take global temperature, vegetation density, soil moisture and previous forecasts as inputs to predict the subsequent global area burnt on an iterative basis. Average Error per Pixel (AEP) and Structural Similarity Index Measure (SSIM) are used as metrics to evaluate the performance of the proposed surrogate models. A fine tuning strategy is also proposed in this work to improve the algorithm performance for unseen scenarios. Numerical results show a strong performance of the proposed models, in terms of both computational efficiency (less than 20 seconds for 30 years of prediction on a laptop CPU) and prediction accuracy (with AEP under 0.3\% and SSIM over 98\% compared to the outputs of JULES-INFERNO).
Abstract:Data assimilation techniques are often confronted with challenges handling complex high dimensional physical systems, because high precision simulation in complex high dimensional physical systems is computationally expensive and the exact observation functions that can be applied in these systems are difficult to obtain. It prompts growing interest in integrating deep learning models within data assimilation workflows, but current software packages for data assimilation cannot handle deep learning models inside. This study presents a novel Python package seamlessly combining data assimilation with deep neural networks to serve as models for state transition and observation functions. The package, named TorchDA, implements Kalman Filter, Ensemble Kalman Filter (EnKF), 3D Variational (3DVar), and 4D Variational (4DVar) algorithms, allowing flexible algorithm selection based on application requirements. Comprehensive experiments conducted on the Lorenz 63 and a two-dimensional shallow water system demonstrate significantly enhanced performance over standalone model predictions without assimilation. The shallow water analysis validates data assimilation capabilities mapping between different physical quantity spaces in either full space or reduced order space. Overall, this innovative software package enables flexible integration of deep learning representations within data assimilation, conferring a versatile tool to tackle complex high dimensional dynamical systems across scientific domains.
Abstract:Automatic radiology report generation can significantly benefit the labor-intensive process of report writing by radiologists, especially for 3D radiographs like CT scans, which are crucial for broad clinical diagnostics yet underexplored compared to 2D radiographs. Existing methods often handle 3D volumes either slice-wise or with aggressive downsampling due to current GPU memory limitations, which results in a loss of the inherent 3D nature and critical details. To overcome these issues, we introduce a novel framework that efficiently and effectively generates radiology reports for high-resolution (HR) 3D volumes, based on large language models (LLMs). Specifically, our framework utilizes low-resolution (LR) visual tokens as queries to mine information from HR tokens, preserving detailed HR information while reducing computational costs by only processing HR informed LR visual queries. Further benefiting the field, we curate and release BIMCV-RG, a new dataset with 5,328 HR 3D volumes and paired reports, establishing the first benchmarks for report generation from 3D HR medical images. Our method consistently surpasses existing methods on this benchmark across three different settings: normal-resolution, high-resolution inputs, and zero-shot domain transfer, all at an acceptable computational cost, trainable on a single A100-80G.
Abstract:Hyperspectral data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) have allowed for unparalleled mapping of the surface mineralogy of Mars. Due to sensor degradation over time, a significant portion of the recently acquired data is considered unusable. Here a new data-driven model architecture, Noise2Noise4Mars (N2N4M), is introduced to remove noise from CRISM images. Our model is self-supervised and does not require zero-noise target data, making it well suited for use in Planetary Science applications where high quality labelled data is scarce. We demonstrate its strong performance on synthetic-noise data and CRISM images, and its impact on downstream classification performance, outperforming benchmark methods on most metrics. This allows for detailed analysis for critical sites of interest on the Martian surface, including proposed lander sites.
Abstract:The burgeoning integration of 3D medical imaging into healthcare has led to a substantial increase in the workload of medical professionals. To assist clinicians in their diagnostic processes and alleviate their workload, the development of a robust system for retrieving similar case studies presents a viable solution. While the concept holds great promise, the field of 3D medical text-image retrieval is currently limited by the absence of robust evaluation benchmarks and curated datasets. To remedy this, our study presents a groundbreaking dataset, BIMCV-R (This dataset will be released upon acceptance.), which includes an extensive collection of 8,069 3D CT volumes, encompassing over 2 million slices, paired with their respective radiological reports. Expanding upon the foundational work of our dataset, we craft a retrieval strategy, MedFinder. This approach employs a dual-stream network architecture, harnessing the potential of large language models to advance the field of medical image retrieval beyond existing text-image retrieval solutions. It marks our preliminary step towards developing a system capable of facilitating text-to-image, image-to-text, and keyword-based retrieval tasks.
Abstract:Electrocardiogram (ECG) serves as the primary non-invasive diagnostic tool for cardiac conditions monitoring, are crucial in assisting clinicians. Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation, which is not only time-consuming but also requires clinical expertise. To automate ECG report generation and ensure its versatility, we propose the Multimodal ECG Instruction Tuning (MEIT) framework, the \textit{first} attempt to tackle ECG report generation with LLMs and multimodal instructions. To facilitate future research, we establish a benchmark to evaluate MEIT with various LLMs backbones across two large-scale ECG datasets. Our approach uniquely aligns the representations of the ECG signal and the report, and we conduct extensive experiments to benchmark MEIT with nine open source LLMs, using more than 800,000 ECG reports. MEIT's results underscore the superior performance of instruction-tuned LLMs, showcasing their proficiency in quality report generation, zero-shot capabilities, and resilience to signal perturbation. These findings emphasize the efficacy of our MEIT framework and its potential for real-world clinical application.
Abstract:Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL}) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10\% annotated training data, averaged across all six datasets.