Abstract:This study proposes a method to diversify queries in existing test collections to reflect some of the diversity of search engine users, aligning with an earlier vision of an 'ideal' test collection. A Large Language Model (LLM) is used to create query variants: alternative queries that have the same meaning as the original. These variants represent user profiles characterised by different properties, such as language and domain proficiency, which are known in the IR literature to influence query formulation. The LLM's ability to generate query variants that align with user profiles is empirically validated, and the variants' utility is further explored for IR system evaluation. Results demonstrate that the variants impact how systems are ranked and show that user profiles experience significantly different levels of system effectiveness. This method enables an alternative perspective on system evaluation where we can observe both the impact of user profiles on system rankings and how system performance varies across users.
Abstract:Implicit collaborative filtering recommenders are usually trained to learn user positive preferences. Negative sampling, which selects informative negative items to form negative training data, plays a crucial role in this process. Since items are often clustered in the latent space, existing negative sampling strategies normally oversample negative items from the dense regions. This leads to homogeneous negative data and limited model expressiveness. In this paper, we propose Diverse Negative Sampling (DivNS), a novel approach that explicitly accounts for diversity in negative training data during the negative sampling process. DivNS first finds hard negative items with large preference scores and constructs user-specific caches that store unused but highly informative negative samples. Then, its diversity-augmented sampler selects a diverse subset of negative items from the cache while ensuring dissimilarity from the user's hard negatives. Finally, a synthetic negatives generator combines the selected diverse negatives with hard negatives to form more effective training data. The resulting synthetic negatives are both informative and diverse, enabling recommenders to learn a broader item space and improve their generalisability. Extensive experiments on four public datasets demonstrate the effectiveness of DivNS in improving recommendation quality while maintaining computational efficiency.
Abstract:Large Language Models (LLMs) are increasingly used to evaluate information retrieval (IR) systems, generating relevance judgments traditionally made by human assessors. Recent empirical studies suggest that LLM-based evaluations often align with human judgments, leading some to suggest that human judges may no longer be necessary, while others highlight concerns about judgment reliability, validity, and long-term impact. As IR systems begin incorporating LLM-generated signals, evaluation outcomes risk becoming self-reinforcing, potentially leading to misleading conclusions. This paper examines scenarios where LLM-evaluators may falsely indicate success, particularly when LLM-based judgments influence both system development and evaluation. We highlight key risks, including bias reinforcement, reproducibility challenges, and inconsistencies in assessment methodologies. To address these concerns, we propose tests to quantify adverse effects, guardrails, and a collaborative framework for constructing reusable test collections that integrate LLM judgments responsibly. By providing perspectives from academia and industry, this work aims to establish best practices for the principled use of LLMs in IR evaluation.
Abstract:LLMs are increasingly being used to assess the relevance of information objects. This work reports on experiments to study the labelling of short texts (i.e., passages) for relevance, using multiple open-source and proprietary LLMs. While the overall agreement of some LLMs with human judgements is comparable to human-to-human agreement measured in previous research, LLMs are more likely to label passages as relevant compared to human judges, indicating that LLM labels denoting non-relevance are more reliable than those indicating relevance. This observation prompts us to further examine cases where human judges and LLMs disagree, particularly when the human judge labels the passage as non-relevant and the LLM labels it as relevant. Results show a tendency for many LLMs to label passages that include the original query terms as relevant. We, therefore, conduct experiments to inject query words into random and irrelevant passages, not unlike the way we inserted the query "best caf\'e near me" into this paper. The results show that LLMs are highly influenced by the presence of query words in the passages under assessment, even if the wider passage has no relevance to the query. This tendency of LLMs to be fooled by the mere presence of query words demonstrates a weakness in our current measures of LLM labelling: relying on overall agreement misses important patterns of failures. There is a real risk of bias in LLM-generated relevance labels and, therefore, a risk of bias in rankers trained on those labels. We also investigate the effects of deliberately manipulating LLMs by instructing them to label passages as relevant, similar to the instruction "this paper is perfectly relevant" inserted above. We find that such manipulation influences the performance of some LLMs, highlighting the critical need to consider potential vulnerabilities when deploying LLMs in real-world applications.
Abstract:This paper explores the utility of a Large Language Model (LLM) to automatically generate queries and query variants from a description of an information need. Given a set of information needs described as backstories, we explore how similar the queries generated by the LLM are to those generated by humans. We quantify the similarity using different metrics and examine how the use of each set would contribute to document pooling when building test collections. Our results show potential in using LLMs to generate query variants. While they may not fully capture the wide variety of human-generated variants, they generate similar sets of relevant documents, reaching up to 71.1% overlap at a pool depth of 100.
Abstract:With the rise of Large Language Models (LLMs) such as ChatGPT, researchers have been working on how to utilize the LLMs for better recommendations. However, although LLMs exhibit black-box and probabilistic characteristics (meaning their internal working is not visible), the evaluation framework used for assessing these LLM-based recommender systems (RS) are the same as those used for traditional recommender systems. To address this gap, we introduce the metamorphic testing for the evaluation of GPT-based RS. This testing technique involves defining of metamorphic relations (MRs) between the inputs and checking if the relationship has been satisfied in the outputs. Specifically, we examined the MRs from both RS and LLMs perspectives, including rating multiplication/shifting in RS and adding spaces/randomness in the LLMs prompt via prompt perturbation. Similarity metrics (e.g. Kendall tau and Ranking Biased Overlap(RBO)) are deployed to measure whether the relationship has been satisfied in the outputs of MRs. The experiment results on MovieLens dataset with GPT3.5 show that lower similarity are obtained in terms of Kendall $\tau$ and RBO, which concludes that there is a need of a comprehensive evaluation of the LLM-based RS in addition to the existing evaluation metrics used for traditional recommender systems.
Abstract:We propose Counterfactual Analysis Quadratic Unconstrained Binary Optimization (CAQUBO) to solve QUBO problems for feature selection in recommender systems. CAQUBO leverages counterfactual analysis to measure the impact of individual features and feature combinations on model performance and employs the measurements to construct the coefficient matrix for a quantum annealer to select the optimal feature combinations for recommender systems, thereby improving their final recommendation performance. By establishing explicit connections between features and the recommendation performance, the proposed approach demonstrates superior performance compared to the state-of-the-art quantum annealing methods. Extensive experiments indicate that integrating quantum computing with counterfactual analysis holds great promise for addressing these challenges.
Abstract:Algorithmic recourse provides actions to individuals who have been adversely affected by automated decision-making and helps them achieve a desired outcome. Knowing the recourse, however, does not guarantee that users would implement it perfectly, either due to environmental variability or personal choices. Recourse generation should thus anticipate its sub-optimal or noisy implementation. While several approaches have constructed recourse that accounts for robustness to small perturbation (i.e., noisy recourse implementation), they assume an entire recourse to be implemented in a single step and thus apply one-off uniform noise to it. Such assumption is unrealistic since recourse often includes multiple sequential steps which becomes harder to implement and subject to more noise. In this work, we consider recourse under plausible noise that adapts to the local data geometry and accumulates at every step of the way. We frame this problem as a Markov Decision Process and demonstrate that the distribution of our plausible noise satisfies the Markov property. We then propose the RObust SEquential (ROSE) recourse generator to output a sequence of steps that will lead to the desired outcome even under imperfect implementation. Given our plausible modelling of sub-optimal human actions and greater recourse robustness to accumulated uncertainty, ROSE can grant users higher chances of success under low recourse costs. Empirical evaluation shows our algorithm manages the inherent trade-off between recourse robustness and costs more effectively while ensuring its low sparsity and fast computation.
Abstract:In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
Abstract:The effectiveness of clarification question models in engaging users within search systems is currently constrained, casting doubt on their overall usefulness. To improve the performance of these models, it is crucial to employ assessment approaches that encompass both real-time feedback from users (online evaluation) and the characteristics of clarification questions evaluated through human assessment (offline evaluation). However, the relationship between online and offline evaluations has been debated in information retrieval. This study aims to investigate how this discordance holds in search clarification. We use user engagement as ground truth and employ several offline labels to investigate to what extent the offline ranked lists of clarification resemble the ideal ranked lists based on online user engagement.