Abstract:This paper explores the utility of a Large Language Model (LLM) to automatically generate queries and query variants from a description of an information need. Given a set of information needs described as backstories, we explore how similar the queries generated by the LLM are to those generated by humans. We quantify the similarity using different metrics and examine how the use of each set would contribute to document pooling when building test collections. Our results show potential in using LLMs to generate query variants. While they may not fully capture the wide variety of human-generated variants, they generate similar sets of relevant documents, reaching up to 71.1% overlap at a pool depth of 100.
Abstract:LLMs are increasingly being used to assess the relevance of information objects. This work reports on experiments to study the labelling of short texts (i.e., passages) for relevance, using multiple open-source and proprietary LLMs. While the overall agreement of some LLMs with human judgements is comparable to human-to-human agreement measured in previous research, LLMs are more likely to label passages as relevant compared to human judges, indicating that LLM labels denoting non-relevance are more reliable than those indicating relevance. This observation prompts us to further examine cases where human judges and LLMs disagree, particularly when the human judge labels the passage as non-relevant and the LLM labels it as relevant. Results show a tendency for many LLMs to label passages that include the original query terms as relevant. We, therefore, conduct experiments to inject query words into random and irrelevant passages, not unlike the way we inserted the query "best caf\'e near me" into this paper. The results show that LLMs are highly influenced by the presence of query words in the passages under assessment, even if the wider passage has no relevance to the query. This tendency of LLMs to be fooled by the mere presence of query words demonstrates a weakness in our current measures of LLM labelling: relying on overall agreement misses important patterns of failures. There is a real risk of bias in LLM-generated relevance labels and, therefore, a risk of bias in rankers trained on those labels. We also investigate the effects of deliberately manipulating LLMs by instructing them to label passages as relevant, similar to the instruction "this paper is perfectly relevant" inserted above. We find that such manipulation influences the performance of some LLMs, highlighting the critical need to consider potential vulnerabilities when deploying LLMs in real-world applications.
Abstract:In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
Abstract:In today's world, sleep quality is pivotal for overall well-being. While wearable sensors offer real-time monitoring, they often lack actionable insights, leading to user abandonment. This paper delves into the role of technology in understanding sleep patterns. We introduce a two-stage framework, utilizing Large Language Models (LLMs), aiming to provide accurate sleep predictions with actionable feedback. Leveraging the GLOBEM dataset and synthetic data from LLMs, we highlight enhanced results with models like XGBoost. Our approach merges advanced machine learning with user-centric design, blending scientific accuracy with practicality.