Abstract:Voice-based systems like Amazon Alexa, Google Assistant, and Apple Siri, along with the growing popularity of OpenAI's ChatGPT and Microsoft's Copilot, serve diverse populations, including visually impaired and low-literacy communities. This reflects a shift in user expectations from traditional search to more interactive question-answering models. However, presenting information effectively in voice-only channels remains challenging due to their linear nature. This limitation can impact the presentation of complex queries involving controversial topics with multiple perspectives. Failing to present diverse viewpoints may perpetuate or introduce biases and affect user attitudes. Balancing information load and addressing biases is crucial in designing a fair and effective voice-based system. To address this, we (i) review how biases and user attitude changes have been studied in screen-based web search, (ii) address challenges in studying these changes in voice-based settings like SCS, (iii) outline research questions, and (iv) propose an experimental setup with variables, data, and instruments to explore biases in a voice-based setting like Spoken Conversational Search.
Abstract:Instruments such as eye-tracking devices have contributed to understanding how users interact with screen-based search engines. However, user-system interactions in audio-only channels -- as is the case for Spoken Conversational Search (SCS) -- are harder to characterize, given the lack of instruments to effectively and precisely capture interactions. Furthermore, in this era of information overload, cognitive bias can significantly impact how we seek and consume information -- especially in the context of controversial topics or multiple viewpoints. This paper draws upon insights from multiple disciplines (including information seeking, psychology, cognitive science, and wearable sensors) to provoke novel conversations in the community. To this end, we discuss future opportunities and propose a framework including multimodal instruments and methods for experimental designs and settings. We demonstrate preliminary results as an example. We also outline the challenges and offer suggestions for adopting this multimodal approach, including ethical considerations, to assist future researchers and practitioners in exploring cognitive biases in SCS.
Abstract:Information access systems are getting complex, and our understanding of user behavior during information seeking processes is mainly drawn from qualitative methods, such as observational studies or surveys. Leveraging the advances in sensing technologies, our study aims to characterize user behaviors with physiological signals, particularly in relation to cognitive load, affective arousal, and valence. We conduct a controlled lab study with 26 participants, and collect data including Electrodermal Activities, Photoplethysmogram, Electroencephalogram, and Pupillary Responses. This study examines informational search with four stages: the realization of Information Need (IN), Query Formulation (QF), Query Submission (QS), and Relevance Judgment (RJ). We also include different interaction modalities to represent modern systems, e.g., QS by text-typing or verbalizing, and RJ with text or audio information. We analyze the physiological signals across these stages and report outcomes of pairwise non-parametric repeated-measure statistical tests. The results show that participants experience significantly higher cognitive loads at IN with a subtle increase in alertness, while QF requires higher attention. QS involves demanding cognitive loads than QF. Affective responses are more pronounced at RJ than QS or IN, suggesting greater interest and engagement as knowledge gaps are resolved. To the best of our knowledge, this is the first study that explores user behaviors in a search process employing a more nuanced quantitative analysis of physiological signals. Our findings offer valuable insights into user behavior and emotional responses in information seeking processes. We believe our proposed methodology can inform the characterization of more complex processes, such as conversational information seeking.
Abstract:The effectiveness of clarification question models in engaging users within search systems is currently constrained, casting doubt on their overall usefulness. To improve the performance of these models, it is crucial to employ assessment approaches that encompass both real-time feedback from users (online evaluation) and the characteristics of clarification questions evaluated through human assessment (offline evaluation). However, the relationship between online and offline evaluations has been debated in information retrieval. This study aims to investigate how this discordance holds in search clarification. We use user engagement as ground truth and employ several offline labels to investigate to what extent the offline ranked lists of clarification resemble the ideal ranked lists based on online user engagement.
Abstract:Creating and deploying customized applications is crucial for operational success and enriching user experiences in the rapidly evolving modern business world. A prominent facet of modern user experiences is the integration of chatbots or voice assistants. The rapid evolution of Large Language Models (LLMs) has provided a powerful tool to build conversational applications. We present Walert, a customized LLM-based conversational agent able to answer frequently asked questions about computer science degrees and programs at RMIT University. Our demo aims to showcase how conversational information-seeking researchers can effectively communicate the benefits of using best practices to stakeholders interested in developing and deploying LLM-based chatbots. These practices are well-known in our community but often overlooked by practitioners who may not have access to this knowledge. The methodology and resources used in this demo serve as a bridge to facilitate knowledge transfer from experts, address industry professionals' practical needs, and foster a collaborative environment. The data and code of the demo are available at https://github.com/rmit-ir/walert.
Abstract:Knowledge graphs (KGs) are becoming essential resources for many downstream applications. However, their incompleteness may limit their potential. Thus, continuous curation is needed to mitigate this problem. One of the strategies to address this problem is KG alignment, i.e., forming a more complete KG by merging two or more KGs. This paper proposes i-Align, an interpretable KG alignment model. Unlike the existing KG alignment models, i-Align provides an explanation for each alignment prediction while maintaining high alignment performance. Experts can use the explanation to check the correctness of the alignment prediction. Thus, the high quality of a KG can be maintained during the curation process (e.g., the merging process of two KGs). To this end, a novel Transformer-based Graph Encoder (Trans-GE) is proposed as a key component of i-Align for aggregating information from entities' neighbors (structures). Trans-GE uses Edge-gated Attention that combines the adjacency matrix and the self-attention matrix to learn a gating mechanism to control the information aggregation from the neighboring entities. It also uses historical embeddings, allowing Trans-GE to be trained over mini-batches, or smaller sub-graphs, to address the scalability issue when encoding a large KG. Another component of i-Align is a Transformer encoder for aggregating entities' attributes. This way, i-Align can generate explanations in the form of a set of the most influential attributes/neighbors based on attention weights. Extensive experiments are conducted to show the power of i-Align. The experiments include several aspects, such as the model's effectiveness for aligning KGs, the quality of the generated explanations, and its practicality for aligning large KGs. The results show the effectiveness of i-Align in these aspects.
Abstract:With the rapid growth of online misinformation, it is crucial to have reliable fact-checking methods. Recent research on finding check-worthy claims and automated fact-checking have made significant advancements. However, limited guidance exists regarding the presentation of fact-checked content to effectively convey verified information to users. We address this research gap by exploring the critical design elements in fact-checking reports and investigating whether credibility and presentation-based design improvements can enhance users' ability to interpret the report accurately. We co-developed potential content presentation strategies through a workshop involving fact-checking professionals, communication experts, and researchers. The workshop examined the significance and utility of elements such as veracity indicators and explored the feasibility of incorporating interactive components for enhanced information disclosure. Building on the workshop outcomes, we conducted an online experiment involving 76 crowd workers to assess the efficacy of different design strategies. The results indicate that proposed strategies significantly improve users' ability to accurately interpret the verdict of fact-checking articles. Our findings underscore the critical role of effective presentation of fact reports in addressing the spread of misinformation. By adopting appropriate design enhancements, the effectiveness of fact-checking reports can be maximized, enabling users to make informed judgments.
Abstract:Physiological signals can potentially be applied as objective measures to understand the behavior and engagement of users interacting with information access systems. However, the signals are highly sensitive, and many controls are required in laboratory user studies. To investigate the extent to which controlled or uncontrolled (i.e., confounding) variables such as task sequence or duration influence the observed signals, we conducted a pilot study where each participant completed four types of information-processing activities (READ, LISTEN, SPEAK, and WRITE). Meanwhile, we collected data on blood volume pulse, electrodermal activity, and pupil responses. We then used machine learning approaches as a mechanism to examine the influence of controlled and uncontrolled variables that commonly arise in user studies. Task duration was found to have a substantial effect on the model performance, suggesting it represents individual differences rather than giving insight into the target variables. This work contributes to our understanding of such variables in using physiological signals in information retrieval user studies.
Abstract:Asking clarification questions is an active area of research; however, resources for training and evaluating search clarification methods are not sufficient. To address this issue, we describe MIMICS-Duo, a new freely available dataset of 306 search queries with multiple clarifications (a total of 1,034 query-clarification pairs). MIMICS-Duo contains fine-grained annotations on clarification questions and their candidate answers and enhances the existing MIMICS datasets by enabling multi-dimensional evaluation of search clarification methods, including online and offline evaluation. We conduct extensive analysis to demonstrate the relationship between offline and online search clarification datasets and outline several research directions enabled by MIMICS-Duo. We believe that this resource will help researchers better understand clarification in search.
Abstract:Existing commercial search engines often struggle to represent different perspectives of a search query. Argument retrieval systems address this limitation of search engines and provide both positive (PRO) and negative (CON) perspectives about a user's information need on a controversial topic (e.g., climate change). The effectiveness of such argument retrieval systems is typically evaluated based on topical relevance and argument quality, without taking into account the often differing number of documents shown for the argument stances (PRO or CON). Therefore, systems may retrieve relevant passages, but with a biased exposure of arguments. In this work, we analyze a range of non-stochastic fairness-aware ranking and diversity metrics to evaluate the extent to which argument stances are fairly exposed in argument retrieval systems. Using the official runs of the argument retrieval task Touch\'e at CLEF 2020, as well as synthetic data to control the amount and order of argument stances in the rankings, we show that systems with the best effectiveness in terms of topical relevance are not necessarily the most fair or the most diverse in terms of argument stance. The relationships we found between (un)fairness and diversity metrics shed light on how to evaluate group fairness -- in addition to topical relevance -- in argument retrieval settings.